Abstract
Triadimefon (Bayleton), a widely used triazole-type fungicide, affects gibberellin (GA) biosynthesis and 14 alpha-demethylase in sterol biosynthesis. The present study revealed that the phenotype of Arabidopsis treated with triadimefon resembled that of a brassinosteroid (BR)-biosynthesis mutant, and that the phenotype was rescued by brassinolide (BL), the most active BR, partly rescued by GA, and fully rescued by the co-application of BL and GA, suggesting that triadimefon affects both BR and GA biosynthesis. The target sites of triadimefon were investigated using a rescue experiment, feeding triadimefon-treated Arabidopsis BR-biosynthesis intermediates, and a binding assay to expressed DWF4 protein, which is reported to be involved in the BR-biosynthesis pathway. The binding assay indicated that the dissociation constant for triadimefon was in good agreement with the activity in an in planta assay. In the triadimefon-treated Arabidopsis cells, the CPD gene in the BR-biosynthesis pathway was up-regulated, probably due to feedback regulation caused by BR deficiency. These results strongly suggest that triadimefon inhibits the reaction catalysed by DWF4 protein and induces BR deficiency in plants. As triadimefon treatment has proved to be beneficial to plants, this result suggests that BR-biosynthesis inhibitors can be applied to crops.
Full Text
The Full Text of this article is available as a PDF (168.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asami T., Min Y. K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N., Yamaguchi I., Yoshida S. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 2000 May;123(1):93–100. doi: 10.1104/pp.123.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asami T., Mizutani M., Fujioka S., Goda H., Min Y. K., Shimada Y., Nakano T., Takatsuto S., Matsuyama T., Nagata N. Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem. 2001 Apr 23;276(28):25687–25691. doi: 10.1074/jbc.M103524200. [DOI] [PubMed] [Google Scholar]
- Asami T, Yoshida S. Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 1999 Sep;4(9):348–353. doi: 10.1016/s1360-1385(99)01456-9. [DOI] [PubMed] [Google Scholar]
- Bishop G. J., Nomura T., Yokota T., Harrison K., Noguchi T., Fujioka S., Takatsuto S., Jones J. D., Kamiya Y. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1761–1766. doi: 10.1073/pnas.96.4.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapple Clint. MOLECULAR-GENETIC ANALYSIS OF PLANT CYTOCHROME P450-DEPENDENT MONOOXYGENASES. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):311–343. doi: 10.1146/annurev.arplant.49.1.311. [DOI] [PubMed] [Google Scholar]
- Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998 Feb;10(2):231–243. doi: 10.1105/tpc.10.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
- Clouse Steven D., Sasse Jenneth M. BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):427–451. doi: 10.1146/annurev.arplant.49.1.427. [DOI] [PubMed] [Google Scholar]
- Fujioka S., Li J., Choi Y. H., Seto H., Takatsuto S., Noguchi T., Watanabe T., Kuriyama H., Yokota T., Chory J. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell. 1997 Nov;9(11):1951–1962. doi: 10.1105/tpc.9.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goda Hideki, Shimada Yukihisa, Asami Tadao, Fujioka Shozo, Yoshida Shigeo. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2002 Nov;130(3):1319–1334. doi: 10.1104/pp.011254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland P. M., Abramson R. D., Watson R., Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276–7280. doi: 10.1073/pnas.88.16.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jang J. C., Fujioka S., Tasaka M., Seto H., Takatsuto S., Ishii A., Aida M., Yoshida S., Sheen J. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 2000 Jun 15;14(12):1485–1497. [PMC free article] [PubMed] [Google Scholar]
- Kang J. G., Yun J., Kim D. H., Chung K. S., Fujioka S., Kim J. I., Dae H. W., Yoshida S., Takatsuto S., Song P. S. Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell. 2001 Jun 1;105(5):625–636. doi: 10.1016/s0092-8674(01)00370-1. [DOI] [PubMed] [Google Scholar]
- Kushiro M., Nakano T., Sato K., Yamagishi K., Asami T., Nakano A., Takatsuto S., Fujioka S., Ebizuka Y., Yoshida S. Obtusifoliol 14alpha-demethylase (CYP51) antisense Arabidopsis shows slow growth and long life. Biochem Biophys Res Commun. 2001 Jul 6;285(1):98–104. doi: 10.1006/bbrc.2001.5122. [DOI] [PubMed] [Google Scholar]
- Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
- Mathur J., Molnár G., Fujioka S., Takatsuto S., Sakurai A., Yokota T., Adam G., Voigt B., Nagy F., Maas C. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. 1998 Jun;14(5):593–602. doi: 10.1046/j.1365-313x.1998.00158.x. [DOI] [PubMed] [Google Scholar]
- Min Y. K., Asami T., Fujioka S., Murofushi N., Yamaguchi I., Yoshida S. New lead compounds for brassinosteroid biosynthesis inhibitors. Bioorg Med Chem Lett. 1999 Feb 8;9(3):425–430. doi: 10.1016/s0960-894x(99)00008-6. [DOI] [PubMed] [Google Scholar]
- Nagata N., Min Y. K., Nakano T., Asami T., Yoshida S. Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta. 2000 Nov;211(6):781–790. doi: 10.1007/s004250000351. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Fujioka S., Choe S., Takatsuto S., Tax F. E., Yoshida S., Feldmann K. A. Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 2000 Sep;124(1):201–209. doi: 10.1104/pp.124.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi T., Fujioka S., Choe S., Takatsuto S., Yoshida S., Yuan H., Feldmann K. A., Tax F. E. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 1999 Nov;121(3):743–752. doi: 10.1104/pp.121.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrick K., Mayer U., Horrichs A., Kuhnt C., Bellini C., Dangl J., Schmidt J., Jürgens G. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 2000 Jun 15;14(12):1471–1484. [PMC free article] [PubMed] [Google Scholar]
- Sekimata K., Kimura T., Kaneko I., Nakano T., Yoneyama K., Takeuchi Y., Yoshida S., Asami T. A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta. 2001 Sep;213(5):716–721. doi: 10.1007/s004250100546. [DOI] [PubMed] [Google Scholar]
- Shimada Y., Fujioka S., Miyauchi N., Kushiro M., Takatsuto S., Nomura T., Yokota T., Kamiya Y., Bishop G. J., Yoshida S. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 2001 Jun;126(2):770–779. doi: 10.1104/pp.126.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
- Wang J. M., Asami T., Yoshida S., Murofushi N. Biological evaluation of 5-substituted pyrimidine derivatives as inhibitors of brassinosteroid biosynthesis. Biosci Biotechnol Biochem. 2001 Apr;65(4):817–822. doi: 10.1271/bbb.65.817. [DOI] [PubMed] [Google Scholar]
- Wang Zhi Yong, Nakano Takeshi, Gendron Joshua, He Junxian, Chen Meng, Vafeados Dionne, Yang Yanli, Fujioka Shozo, Yoshida Shigeo, Asami Tadao. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. 2002 Apr;2(4):505–513. doi: 10.1016/s1534-5807(02)00153-3. [DOI] [PubMed] [Google Scholar]
- Yin Yanhai, Wang Zhi Yong, Mora-Garcia Santiago, Li Jianming, Yoshida Shigeo, Asami Tadao, Chory Joanne. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. 2002 Apr 19;109(2):181–191. doi: 10.1016/s0092-8674(02)00721-3. [DOI] [PubMed] [Google Scholar]