Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):163–171. doi: 10.1042/BJ20020743

A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: expression in prostate cancer cells and enhancement of androgen receptor activity.

Hidenori Kawashima 1, Haruna Takano 1, Syozo Sugita 1, Yuki Takahara 1, Kazunobu Sugimura 1, Tatsuya Nakatani 1
PMCID: PMC1223065  PMID: 12350225

Abstract

We have cloned a cDNA coding for a novel steroid receptor co-activator protein termed SRAP from a rat prostate library. Although the nucleotide sequence of the SRAP has 78.2% identity to that of the human steroid receptor RNA activator (SRA), a novel RNA molecule which was reported to act as an RNA transcript without being translated into protein [Lanz, McKenna, Onate, Albrecht, Wong, Tsai, Tsai and O'Malley (1999) Cell 97, 17-27], the cDNA of SRAP is capable of generating a functional protein. Glutathione S-transferase pull-down assays showed that SRAP associates with the partial androgen receptor (AR) protein composed of a DNA-binding domain and an activation function 2. Luciferase assays demonstrated that SRAP enhances the transactivation activity of the AR, the glucocorticoid receptor and the peroxisome proliferator-activated receptor gamma(1) in a ligand-dependent manner. Using a green fluorescent protein (GFP) fusion-protein construct, we demonstrated in vivo translation of the GFP-SRAP fusion protein in HeLa cells co-transfected with pSG5AR and reporter gene in the presence of 5 alpha-dihydrotestosterone (DHT). Co-transfection of the GFP-SRAP fusion protein expression plasmid enhanced the transactivation activity of AR whereas incorporation of mutations in SRAP of the fusion protein resulted in loss of enhancement of the transactivation activity. Northern blot analysis and reverse transcriptase PCR assays showed that SRAP and SRA are expressed in rat and human prostate cancer cell lines respectively. In HeLa cells and the human prostate cancer cells line DU-145, co-transfected with SRAP, the DHT-dependent transactivation activities of AR were not completely inhibited by the anti-androgen flutamide, but the transactivation activities still remained high even in the presence of 5 microM flutamide, suggesting that SRAP may play an important role in enhancing AR activity in prostate cancer.

Full Text

The Full Text of this article is available as a PDF (294.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavaillès V., Dauvois S., L'Horset F., Lopez G., Hoare S., Kushner P. J., Parker M. G. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995 Aug 1;14(15):3741–3751. doi: 10.1002/j.1460-2075.1995.tb00044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen H., Lin R. J., Schiltz R. L., Chakravarti D., Nash A., Nagy L., Privalsky M. L., Nakatani Y., Evans R. M. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997 Aug 8;90(3):569–580. doi: 10.1016/s0092-8674(00)80516-4. [DOI] [PubMed] [Google Scholar]
  3. Chen T., Wang L. H., Farrar W. L. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000 Apr 15;60(8):2132–2135. [PubMed] [Google Scholar]
  4. Craft N., Shostak Y., Carey M., Sawyers C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999 Mar;5(3):280–285. doi: 10.1038/6495. [DOI] [PubMed] [Google Scholar]
  5. Culig Z., Hobisch A., Cronauer M. V., Cato A. C., Hittmair A., Radmayr C., Eberle J., Bartsch G., Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993 Dec;7(12):1541–1550. doi: 10.1210/mend.7.12.8145761. [DOI] [PubMed] [Google Scholar]
  6. Darbre P., Page M., King R. J. Androgen regulation by the long terminal repeat of mouse mammary tumor virus. Mol Cell Biol. 1986 Aug;6(8):2847–2854. doi: 10.1128/mcb.6.8.2847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eckner R., Ewen M. E., Newsome D., Gerdes M., DeCaprio J. A., Lawrence J. B., Livingston D. M. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994 Apr 15;8(8):869–884. doi: 10.1101/gad.8.8.869. [DOI] [PubMed] [Google Scholar]
  8. Ershov A. V., Bazan N. G. Photoreceptor phagocytosis selectively activates PPARgamma expression in retinal pigment epithelial cells. J Neurosci Res. 2000 May 1;60(3):328–337. doi: 10.1002/(SICI)1097-4547(20000501)60:3<328::AID-JNR7>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  9. Fujimoto N., Yeh S., Kang H. Y., Inui S., Chang H. C., Mizokami A., Chang C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem. 1999 Mar 19;274(12):8316–8321. doi: 10.1074/jbc.274.12.8316. [DOI] [PubMed] [Google Scholar]
  10. Gaddipati J. P., McLeod D. G., Heidenberg H. B., Sesterhenn I. A., Finger M. J., Moul J. W., Srivastava S. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 1994 Jun 1;54(11):2861–2864. [PubMed] [Google Scholar]
  11. Hsiao P. W., Chang C. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J Biol Chem. 1999 Aug 6;274(32):22373–22379. doi: 10.1074/jbc.274.32.22373. [DOI] [PubMed] [Google Scholar]
  12. Joyce R., Fenton M. A., Rode P., Constantine M., Gaynes L., Kolvenbag G., DeWolf W., Balk S., Taplin M. E., Bubley G. J. High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy. J Urol. 1998 Jan;159(1):149–153. doi: 10.1016/s0022-5347(01)64039-4. [DOI] [PubMed] [Google Scholar]
  13. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
  14. Kang H. Y., Yeh S., Fujimoto N., Chang C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem. 1999 Mar 26;274(13):8570–8576. doi: 10.1074/jbc.274.13.8570. [DOI] [PubMed] [Google Scholar]
  15. Kawashima H., Strobel H. W. cDNA cloning of a novel rat brain cytochrome P450 belonging to the CYP2D subfamily. Biochem Biophys Res Commun. 1995 Apr 17;209(2):535–540. doi: 10.1006/bbrc.1995.1534. [DOI] [PubMed] [Google Scholar]
  16. Koivisto P., Kononen J., Palmberg C., Tammela T., Hyytinen E., Isola J., Trapman J., Cleutjens K., Noordzij A., Visakorpi T. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997 Jan 15;57(2):314–319. [PubMed] [Google Scholar]
  17. Kuiper G. G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanz R. B., McKenna N. J., Onate S. A., Albrecht U., Wong J., Tsai S. Y., Tsai M. J., O'Malley B. W. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999 Apr 2;97(1):17–27. doi: 10.1016/s0092-8674(00)80711-4. [DOI] [PubMed] [Google Scholar]
  19. Le Douarin B., Zechel C., Garnier J. M., Lutz Y., Tora L., Pierrat P., Heery D., Gronemeyer H., Chambon P., Losson R. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995 May 1;14(9):2020–2033. doi: 10.1002/j.1460-2075.1995.tb07194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leygue E., Dotzlaw H., Watson P. H., Murphy L. C. Expression of the steroid receptor RNA activator in human breast tumors. Cancer Res. 1999 Sep 1;59(17):4190–4193. [PubMed] [Google Scholar]
  21. Murphy L. C., Simon S. L., Parkes A., Leygue E., Dotzlaw H., Snell L., Troup S., Adeyinka A., Watson P. H. Altered expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res. 2000 Nov 15;60(22):6266–6271. [PubMed] [Google Scholar]
  22. Nessler-Menardi C., Jotova I., Culig Z., Eder I. E., Putz T., Bartsch G., Klocker H. Expression of androgen receptor coregulatory proteins in prostate cancer and stromal-cell culture models. Prostate. 2000 Oct 1;45(2):124–131. doi: 10.1002/1097-0045(20001001)45:2<124::aid-pros6>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  23. Osada S., Tsukamoto T., Takiguchi M., Mori M., Osumi T. Identification of an extended half-site motif required for the function of peroxisome proliferator-activated receptor alpha. Genes Cells. 1997 May;2(5):315–327. doi: 10.1046/j.1365-2443.1997.1220319.x. [DOI] [PubMed] [Google Scholar]
  24. Oñate S. A., Tsai S. Y., Tsai M. J., O'Malley B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354–1357. doi: 10.1126/science.270.5240.1354. [DOI] [PubMed] [Google Scholar]
  25. Voegel J. J., Heine M. J., Zechel C., Chambon P., Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996 Jul 15;15(14):3667–3675. [PMC free article] [PubMed] [Google Scholar]
  26. Wang X., Yeh S., Wu G., Hsu C. L., Wang L., Chiang T., Yang Y., Guo Y., Chang C. Identification and characterization of a novel androgen receptor coregulator ARA267-alpha in prostate cancer cells. J Biol Chem. 2001 Aug 16;276(44):40417–40423. doi: 10.1074/jbc.M104765200. [DOI] [PubMed] [Google Scholar]
  27. Watanabe M., Yanagisawa J., Kitagawa H., Takeyama K., Ogawa S., Arao Y., Suzawa M., Kobayashi Y., Yano T., Yoshikawa H. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J. 2001 Mar 15;20(6):1341–1352. doi: 10.1093/emboj/20.6.1341. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  28. Yeh S., Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5517–5521. doi: 10.1073/pnas.93.11.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeh S., Lin H. K., Kang H. Y., Thin T. H., Lin M. F., Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5458–5463. doi: 10.1073/pnas.96.10.5458. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES