Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):55–62. doi: 10.1042/BJ20021226

A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

Sanna Partanen 1, Stephan Storch 1, Hans-Gerhard Löffler 1, Andrej Hasilik 1, Jaana Tyynelä 1, Thomas Braulke 1
PMCID: PMC1223066  PMID: 12350228

Abstract

The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme.

Full Text

The Full Text of this article is available as a PDF (305.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyagi T., Morishima H., Nishizawa R., Kunimoto S., Takeuchi T. Biological activity of pepstatins, pepstanone A and partial peptides on pepsin, cathepsin D and renin. J Antibiot (Tokyo) 1972 Dec;25(12):689–694. doi: 10.7164/antibiotics.25.689. [DOI] [PubMed] [Google Scholar]
  2. Baldwin E. T., Bhat T. N., Gulnik S., Hosur M. V., Sowder R. C., 2nd, Cachau R. E., Collins J., Silva A. M., Erickson J. W. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6796–6800. doi: 10.1073/pnas.90.14.6796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braulke T., Geuze H. J., Slot J. W., Hasilik A., von Figura K. On the effects of weak bases and monensin on sorting and processing of lysosomal enzymes in human cells. Eur J Cell Biol. 1987 Jun;43(3):316–321. [PubMed] [Google Scholar]
  4. Capony F., Braulke T., Rougeot C., Roux S., Montcourrier P., Rochefort H. Specific mannose-6-phosphate receptor-independent sorting of pro-cathepsin D in breast cancer cells. Exp Cell Res. 1994 Nov;215(1):154–163. doi: 10.1006/excr.1994.1327. [DOI] [PubMed] [Google Scholar]
  5. Claussen M., Kübler B., Wendland M., Neifer K., Schmidt B., Zapf J., Braulke T. Proteolysis of insulin-like growth factors (IGF) and IGF binding proteins by cathepsin D. Endocrinology. 1997 Sep;138(9):3797–3803. doi: 10.1210/endo.138.9.5418. [DOI] [PubMed] [Google Scholar]
  6. Deiss L. P., Galinka H., Berissi H., Cohen O., Kimchi A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 1996 Aug 1;15(15):3861–3870. [PMC free article] [PubMed] [Google Scholar]
  7. Dittmer F., Ulbrich E. J., Hafner A., Schmahl W., Meister T., Pohlmann R., von Figura K. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci. 1999 May;112(Pt 10):1591–1597. doi: 10.1242/jcs.112.10.1591. [DOI] [PubMed] [Google Scholar]
  8. Dunn B. Splitting image. Nat Struct Biol. 1997 Dec;4(12):969–972. doi: 10.1038/nsb1297-969. [DOI] [PubMed] [Google Scholar]
  9. Erickson A. H., Blobel G. Carboxyl-terminal proteolytic processing during biosynthesis of the lysosomal enzymes beta-glucuronidase and cathepsin D. Biochemistry. 1983 Oct 25;22(22):5201–5205. doi: 10.1021/bi00291a021. [DOI] [PubMed] [Google Scholar]
  10. Erickson A. H., Conner G. E., Blobel G. Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D. J Biol Chem. 1981 Nov 10;256(21):11224–11231. [PubMed] [Google Scholar]
  11. Faust P. L., Kornfeld S., Chirgwin J. M. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4910–4914. doi: 10.1073/pnas.82.15.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcia M., Derocq D., Pujol P., Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene. 1990 Dec;5(12):1809–1814. [PubMed] [Google Scholar]
  13. Garcia M., Derocq D., Pujol P., Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene. 1990 Dec;5(12):1809–1814. [PubMed] [Google Scholar]
  14. Glickman J. N., Kornfeld S. Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts. J Cell Biol. 1993 Oct;123(1):99–108. doi: 10.1083/jcb.123.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glondu M., Coopman P., Laurent-Matha V., Garcia M., Rochefort H., Liaudet-Coopman E. A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells. Oncogene. 2001 Oct 18;20(47):6920–6929. doi: 10.1038/sj.onc.1204843. [DOI] [PubMed] [Google Scholar]
  16. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
  17. Hentze M., Hasilik A., von Figura K. Enhanced degradation of cathepsin D synthesized in the presence of the threonine analog beta-hydroxynorvaline. Arch Biochem Biophys. 1984 Apr;230(1):375–382. doi: 10.1016/0003-9861(84)90120-6. [DOI] [PubMed] [Google Scholar]
  18. Isahara K., Ohsawa Y., Kanamori S., Shibata M., Waguri S., Sato N., Gotow T., Watanabe T., Momoi T., Urase K. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience. 1999;91(1):233–249. doi: 10.1016/s0306-4522(98)00566-1. [DOI] [PubMed] [Google Scholar]
  19. Isidoro C., Baccino F. M., Hasilik A. Human and hamster procathepsin D, although equally tagged with mannose-6-phosphate, are differentially targeted to lysosomes in transfected BHK cells. Cell Tissue Res. 1998 May;292(2):303–310. doi: 10.1007/s004410051061. [DOI] [PubMed] [Google Scholar]
  20. Khan A. R., James M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. doi: 10.1002/pro.5560070401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koike M., Nakanishi H., Saftig P., Ezaki J., Isahara K., Ohsawa Y., Schulz-Schaeffer W., Watanabe T., Waguri S., Kametaka S. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000 Sep 15;20(18):6898–6906. doi: 10.1523/JNEUROSCI.20-18-06898.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  23. Kågedal K., Johansson U., Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001 Jul;15(9):1592–1594. doi: 10.1096/fj.00-0708fje. [DOI] [PubMed] [Google Scholar]
  24. McIntyre G. F., Erickson A. H. Procathepsins L and D are membrane-bound in acidic microsomal vesicles. J Biol Chem. 1991 Aug 15;266(23):15438–15445. [PubMed] [Google Scholar]
  25. Metcalf P., Fusek M. Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. EMBO J. 1993 Apr;12(4):1293–1302. doi: 10.1002/j.1460-2075.1993.tb05774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohlmann R., Boeker M. W., von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem. 1995 Nov 10;270(45):27311–27318. doi: 10.1074/jbc.270.45.27311. [DOI] [PubMed] [Google Scholar]
  27. Rawlings N. D., Barrett A. J. Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol. 1995;248:105–120. doi: 10.1016/0076-6879(95)48009-9. [DOI] [PubMed] [Google Scholar]
  28. Rijnboutt S., Kal A. J., Geuze H. J., Aerts H., Strous G. J. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells. J Biol Chem. 1991 Dec 15;266(35):23586–23592. [PubMed] [Google Scholar]
  29. Saftig P., Hetman M., Schmahl W., Weber K., Heine L., Mossmann H., Köster A., Hess B., Evers M., von Figura K. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 1995 Aug 1;14(15):3599–3608. doi: 10.1002/j.1460-2075.1995.tb00029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scharf J. G., Schmidt-Sandte W., Pahernik S. A., Ramadori G., Braulke T., Hartmann H. Characterization of the insulin-like growth factor axis in a human hepatoma cell line (PLC). Carcinogenesis. 1998 Dec;19(12):2121–2128. doi: 10.1093/carcin/19.12.2121. [DOI] [PubMed] [Google Scholar]
  31. Stein M., Braulke T., Krentler C., Hasilik A., von Figura K. 46-kDa mannose 6-phosphate-specific receptor: biosynthesis, processing, subcellular location and topology. Biol Chem Hoppe Seyler. 1987 Aug;368(8):937–947. doi: 10.1515/bchm3.1987.368.2.937. [DOI] [PubMed] [Google Scholar]
  32. Tyynelä J., Sohar I., Sleat D. E., Gin R. M., Donnelly R. J., Baumann M., Haltia M., Lobel P. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000 Jun 15;19(12):2786–2792. doi: 10.1093/emboj/19.12.2786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Uchiyama Y. Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol. 2001 Aug;64(3):233–246. doi: 10.1679/aohc.64.233. [DOI] [PubMed] [Google Scholar]
  34. Vetvicka V., Vetvickova J., Fusek M. Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res Treat. 1999 Oct;57(3):261–269. doi: 10.1023/a:1006238003772. [DOI] [PubMed] [Google Scholar]
  35. Vigneswaran N., Zhao W., Dassanayake A., Muller S., Miller D. M., Zacharias W. Variable expression of cathepsin B and D correlates with highly invasive and metastatic phenotype of oral cancer. Hum Pathol. 2000 Aug;31(8):931–937. doi: 10.1053/hupa.2000.9035. [DOI] [PubMed] [Google Scholar]
  36. Wittlin S., Rösel J., Hofmann F., Stover D. R. Mechanisms and kinetics of procathepsin D activation. Eur J Biochem. 1999 Oct 1;265(1):384–393. doi: 10.1046/j.1432-1327.1999.00747.x. [DOI] [PubMed] [Google Scholar]
  37. Wu G. S., Saftig P., Peters C., El-Deiry W. S. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene. 1998 Apr 30;16(17):2177–2183. doi: 10.1038/sj.onc.1201755. [DOI] [PubMed] [Google Scholar]
  38. Zhu Y., Conner G. E. Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem. 1994 Feb 4;269(5):3846–3851. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES