Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):77–88. doi: 10.1042/BJ20020782

Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution.

Tuomas Haltia 1, Kieron Brown 1, Mariella Tegoni 1, Christian Cambillau 1, Matti Saraste 1, Kimmo Mattila 1, Kristina Djinovic-Carugo 1
PMCID: PMC1223067  PMID: 12356332

Abstract

N2O is generated by denitrifying bacteria as a product of NO reduction. In denitrification, N2O is metabolized further by the enzyme N2O reductase (N2OR), a multicopper protein which converts N2O into dinitrogen and water. The structure of N2OR remained unknown until the recent elucidation of the structure of the enzyme isolated from Pseudomonas nautica. In the present paper, we report the crystal structure of a blue form of the enzyme that was purified under aerobic conditions from Paracoccus denitrificans. N2OR is a head-to-tail homodimer stabilized by a multitude of interactions including two calcium sites located at the intermonomeric surface. Each monomer is composed of two domains: a C-terminal cupredoxin domain that carries the dinuclear electron entry site known as Cu(A), and an N-terminal seven-bladed beta-propeller domain which hosts the active-site centre Cu(Z). The electrons are transferred from Cu(A) to Cu(Z) across the subunit interface. Cu(Z) is a tetranuclear copper cluster in which the four copper ions (Cu1 to Cu4) are ligated by seven histidine imidazoles, a hydroxyl or water oxygen and a bridging inorganic sulphide. A bound chloride ion near the Cu(Z) active site shares one of the ligand imidazoles of Cu1. This arrangement probably influences the redox potential of Cu1 so that this copper is stabilized in the cupric state. The treatment of N2OR with H2O2 or cyanide causes the disappearance of the optical band at 640 nm, attributed to the Cu(Z) centre. The crystal structure of the enzyme soaked with H2O2 or cyanide suggests that an average of one copper of the Cu(Z) cluster has been lost. The lowest occupancy is observed for Cu3 and Cu4. A docking experiment suggests that N(2)O binds between Cu1 and Cu4 so that the oxygen of N2O replaces the oxygen ligand of Cu4. Certain ligand imidazoles of Cu1 and Cu2, as well as of Cu4, are located at the dimer interface. Particularly those of Cu2 and Cu4 are parts of a bonding network which couples these coppers to the Cu(A) centre in the neighbouring monomer. This structure may provide an efficient electron transfer path for reduction of the bound N2O.

Full Text

The Full Text of this article is available as a PDF (427.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez M. L., Ai J., Zumft W., Sanders-Loehr J., Dooley D. M. Characterization of the copper-sulfur chromophores in nitrous oxide reductase by resonance raman spectroscopy: evidence for sulfur coordination in the catalytic cluster. J Am Chem Soc. 2001 Jan 31;123(4):576–587. doi: 10.1021/ja994322i. [DOI] [PubMed] [Google Scholar]
  2. Bange H. W. Global change. It's not a gas. Nature. 2000 Nov 16;408(6810):301–302. doi: 10.1038/35042656. [DOI] [PubMed] [Google Scholar]
  3. Brown K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J. J., Moura I., Tegoni M., Cambillau C. Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J Biol Chem. 2000 Dec 29;275(52):41133–41136. doi: 10.1074/jbc.M008617200. [DOI] [PubMed] [Google Scholar]
  4. Brown K., Tegoni M., Prudêncio M., Pereira A. S., Besson S., Moura J. J., Moura I., Cambillau C. A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol. 2000 Mar;7(3):191–195. doi: 10.1038/73288. [DOI] [PubMed] [Google Scholar]
  5. Charnock J. M., Dreusch A., Körner H., Neese F., Nelson J., Kannt A., Michel H., Garner C. D., Kroneck P. M., Zumft W. G. Structural investigations of the CuA centre of nitrous oxide reductase from Pseudomonas stutzeri by site-directed mutagenesis and X-ray absorption spectroscopy. Eur J Biochem. 2000 Mar;267(5):1368–1381. doi: 10.1046/j.1432-1327.2000.01131.x. [DOI] [PubMed] [Google Scholar]
  6. Chen Peng, Cabrito Inês, Moura José J. G., Moura Isabel, Solomon Edward I. Spectroscopic and electronic structure studies of the mu(4)-sulfide bridged tetranuclear Cu(Z) cluster in N(2)O reductase: molecular insight into the catalytic mechanism. J Am Chem Soc. 2002 Sep 4;124(35):10497–10507. doi: 10.1021/ja0205028. [DOI] [PubMed] [Google Scholar]
  7. Chen Peng, DeBeer George Serena, Cabrito Inês, Antholine William E., Moura José J. G., Moura Isabel, Hedman Britt, Hodgson Keith O., Solomon Edward I. Electronic structure description of the mu(4)-sulfide bridged tetranuclear Cu(Z) center in N(2)O reductase. J Am Chem Soc. 2002 Feb 6;124(5):744–745. doi: 10.1021/ja0169623. [DOI] [PubMed] [Google Scholar]
  8. DeBeer George S., Metz M., Szilagyi R. K., Wang H., Cramer S. P., Lu Y., Tolman W. B., Hedman B., Hodgson K. O., Solomon E. I. A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. J Am Chem Soc. 2001 Jun 20;123(24):5757–5767. doi: 10.1021/ja004109i. [DOI] [PubMed] [Google Scholar]
  9. Farrar J. A., Thomson A. J., Cheesman M. R., Dooley D. M., Zumft W. G. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett. 1991 Dec 2;294(1-2):11–15. doi: 10.1016/0014-5793(91)81331-2. [DOI] [PubMed] [Google Scholar]
  10. Farver O., Lu Y., Ang M. C., Pecht I. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):899–902. doi: 10.1073/pnas.96.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferretti S., Grossmann J. G., Hasnain S. S., Eady R. R., Smith B. E. Biochemical characterization and solution structure of nitrous oxide reductase from Alcaligenes xylosoxidans (NCIMB 11015). Eur J Biochem. 1999 Feb;259(3):651–659. doi: 10.1046/j.1432-1327.1999.00082.x. [DOI] [PubMed] [Google Scholar]
  12. Fülöp V., Jones D. T. Beta propellers: structural rigidity and functional diversity. Curr Opin Struct Biol. 1999 Dec;9(6):715–721. doi: 10.1016/s0959-440x(99)00035-4. [DOI] [PubMed] [Google Scholar]
  13. Hakulinen Nina, Kiiskinen Laura-Leena, Kruus Kristiina, Saloheimo Markku, Paananen Arja, Koivula Anu, Rouvinen Juha. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol. 2002 Aug;9(8):601–605. doi: 10.1038/nsb823. [DOI] [PubMed] [Google Scholar]
  14. Hoeren F. U., Berks B. C., Ferguson S. J., McCarthy J. E. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur J Biochem. 1993 Nov 15;218(1):49–57. doi: 10.1111/j.1432-1033.1993.tb18350.x. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Sander C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 1999 Jan 1;27(1):244–247. doi: 10.1093/nar/27.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jafferji A., Sami M., Nuttall J., Ferguson S. J., Berks B. C., Fülöp V. Crystallization and preliminary X-ray analysis of nitrous oxide reductase from Paracoccus pantotrophus. Acta Crystallogr D Biol Crystallogr. 2000 May;56(Pt 5):653–655. doi: 10.1107/s0907444900003097. [DOI] [PubMed] [Google Scholar]
  17. Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  19. Kroneck P. M., Antholine W. A., Riester J., Zumft W. G. The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett. 1988 Dec 19;242(1):70–74. doi: 10.1016/0014-5793(88)80987-6. [DOI] [PubMed] [Google Scholar]
  20. Kroneck P. M., Antholine W. E., Kastrau D. H., Buse G., Steffens G. C., Zumft W. G. Multifrequency EPR evidence for a bimetallic center at the CuA site in cytochrome c oxidase. FEBS Lett. 1990 Jul 30;268(1):274–276. doi: 10.1016/0014-5793(90)81026-k. [DOI] [PubMed] [Google Scholar]
  21. Ludwig B. Cytochrome c oxidase from Paracoccus denitrificans. Methods Enzymol. 1986;126:153–159. doi: 10.1016/s0076-6879(86)26017-6. [DOI] [PubMed] [Google Scholar]
  22. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  23. Ostermeier C., Harrenga A., Ermler U., Michel H. Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10547–10553. doi: 10.1073/pnas.94.20.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Page C. C., Moser C. C., Chen X., Dutton P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999 Nov 4;402(6757):47–52. doi: 10.1038/46972. [DOI] [PubMed] [Google Scholar]
  25. Prudêncio M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F. Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617. Biochemistry. 2000 Apr 11;39(14):3899–3907. doi: 10.1021/bi9926328. [DOI] [PubMed] [Google Scholar]
  26. Randall D. W., Gamelin D. R., LaCroix L. B., Solomon E. I. Electronic structure contributions to electron transfer in blue Cu and Cu(A). J Biol Inorg Chem. 2000 Feb;5(1):16–29. doi: 10.1007/s007750050003. [DOI] [PubMed] [Google Scholar]
  27. Rasmussen T., Berks B. C., Sanders-Loehr J., Dooley D. M., Zumft W. G., Thomson A. J. The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster. Biochemistry. 2000 Oct 24;39(42):12753–12756. doi: 10.1021/bi001811i. [DOI] [PubMed] [Google Scholar]
  28. Rasmussen Tim, Berks Ben C., Butt Julea N., Thomson Andrew J. Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus. Biochem J. 2002 Jun 15;364(Pt 3):807–815. doi: 10.1042/BJ20020055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Riester J., Zumft W. G., Kroneck P. M. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem. 1989 Jan 2;178(3):751–762. doi: 10.1111/j.1432-1033.1989.tb14506.x. [DOI] [PubMed] [Google Scholar]
  30. Robinson H., Ang M. C., Gao Y. G., Hay M. T., Lu Y., Wang A. H. Structural basis of electron transfer modulation in the purple CuA center. Biochemistry. 1999 May 4;38(18):5677–5683. doi: 10.1021/bi9901634. [DOI] [PubMed] [Google Scholar]
  31. Saraste M., Castresana J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 1994 Mar 14;341(1):1–4. doi: 10.1016/0014-5793(94)80228-9. [DOI] [PubMed] [Google Scholar]
  32. Scott R. A., Zumft W. G., Coyle C. L., Dooley D. M. Pseudomonas stutzeri N2O reductase contains CuA-type sites. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4082–4086. doi: 10.1073/pnas.86.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Snyder S. W., Hollocher T. C. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J Biol Chem. 1987 May 15;262(14):6515–6525. [PubMed] [Google Scholar]
  34. Soulimane T., Buse G., Bourenkov G. P., Bartunik H. D., Huber R., Than M. E. Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus. EMBO J. 2000 Apr 17;19(8):1766–1776. doi: 10.1093/emboj/19.8.1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suharti, Strampraad M. J., Schröder I., de Vries S. A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry. 2001 Feb 27;40(8):2632–2639. doi: 10.1021/bi0020067. [DOI] [PubMed] [Google Scholar]
  36. Terwilliger T. C., Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849–861. doi: 10.1107/S0907444999000839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]
  38. Williams P. A., Blackburn N. J., Sanders D., Bellamy H., Stura E. A., Fee J. A., McRee D. E. The CuA domain of Thermus thermophilus ba3-type cytochrome c oxidase at 1.6 A resolution. Nat Struct Biol. 1999 Jun;6(6):509–516. doi: 10.1038/9274. [DOI] [PubMed] [Google Scholar]
  39. Wilmanns M., Lappalainen P., Kelly M., Sauer-Eriksson E., Saraste M. Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11955–11959. doi: 10.1073/pnas.92.26.11955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yoshikawa S., Shinzawa-Itoh K., Nakashima R., Yaono R., Yamashita E., Inoue N., Yao M., Fei M. J., Libeu C. P., Mizushima T. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science. 1998 Jun 12;280(5370):1723–1729. doi: 10.1126/science.280.5370.1723. [DOI] [PubMed] [Google Scholar]
  41. Zumft W. G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997 Dec;61(4):533–616. doi: 10.1128/mmbr.61.4.533-616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES