Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):153–161. doi: 10.1042/BJ20020597

Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.

Jon R Lloyd 1, Ching Leang 1, Allison L Hodges Myerson 1, Maddalena V Coppi 1, Stacey Cuifo 1, Barb Methe 1, Steven J Sandler 1, Derek R Lovley 1
PMCID: PMC1223068  PMID: 12356333

Abstract

A 9.6 kDa periplasmic c -type cytochrome, designated PpcA, was purified from the Fe(III)-reducing bacterium Geobacter sulfurreducens and characterized. The purified protein is basic (pI 9.5), contains three haems and has an N-terminal amino acid sequence closely related to those of the previously described trihaem c (7) cytochromes of Geobacter metallireducens and Desulfuromonas acetoxidans. The gene encoding PpcA was identified from the G. sulfurreducens genome using the N-terminal sequence, and encodes a protein of 71 amino acids (molecular mass 9.58 kDa) with 49% identity to the c (7) cytochrome of D. acetoxidans. In order to determine the physiological role of PpcA, a knockout mutant was prepared with a single-step recombination method. Acetate-dependent Fe(III) reduction was significantly inhibited in both growing cultures and cell suspensions of the mutant. When ppcA was expressed in trans, the full capacity for Fe(III) reduction with acetate was restored. The transfer of electrons from acetate to anthraquinone 2,6-disulphonate (AQDS; a humic acid analogue) and to U(VI) was also compromised in the mutant, but acetate-dependent reduction of fumarate was not altered. The rates of reduction of Fe(III), AQDS, U(VI) and fumarate were also the same in the wild type and ppcA mutant when hydrogen was supplied as the electron donor. When taken together with previous studies on other electron transport proteins in G. sulfurreducens, these results suggest that PpcA serves as an intermediary electron carrier from acetate to terminal Fe(III) reductases in the outer membrane, and is also involved in the transfer of electrons from acetate to U(VI) and humics.

Full Text

The Full Text of this article is available as a PDF (205.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afkar E., Fukumori Y. Purification and characterization of triheme cytochrome c7 from the metal-reducing bacterium, Geobacter metallireducens. FEMS Microbiol Lett. 1999 Jun 15;175(2):205–210. doi: 10.1111/j.1574-6968.1999.tb13621.x. [DOI] [PubMed] [Google Scholar]
  2. Ambler R. P. The amino acid sequence of cytochrome c-551.5 (Cytochrome c(7)) from the green photosynthetic bacterium Chloropseudomonas ethylica. FEBS Lett. 1971 Nov 1;18(2):351–353. doi: 10.1016/0014-5793(71)80484-2. [DOI] [PubMed] [Google Scholar]
  3. Aubert C., Lojou E., Bianco P., Rousset M., Durand M. C., Bruschi M., Dolla A. The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol. 1998 Apr;64(4):1308–1312. doi: 10.1128/aem.64.4.1308-1312.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banci L., Bertini I., Bruschi M., Sompornpisut P., Turano P. NMR characterization and solution structure determination of the oxidized cytochrome c7 from Desulfuromonas acetoxidans. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14396–14400. doi: 10.1073/pnas.93.25.14396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beliaev A. S., Saffarini D. A., McLaughlin J. L., Hunnicutt D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol. 2001 Feb;39(3):722–730. doi: 10.1046/j.1365-2958.2001.02257.x. [DOI] [PubMed] [Google Scholar]
  6. Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
  7. Bruschi M. Cytochrome c3 (M(r) 26,000) isolated from sulfate-reducing bacteria and its relationships to other polyhemic cytochromes from Desulfovibrio. Methods Enzymol. 1994;243:140–155. doi: 10.1016/0076-6879(94)43012-8. [DOI] [PubMed] [Google Scholar]
  8. Bruschi M., Leroy G., Guerlesquin F., Bonicel J. Amino-acid sequence of the cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway and a comparison with those of the other polyhemic cytochromes from Desulfovibrio. Biochim Biophys Acta. 1994 Mar 16;1205(1):123–131. doi: 10.1016/0167-4838(94)90100-7. [DOI] [PubMed] [Google Scholar]
  9. Bruschi M., Woudstra M., Guigliarelli B., Asso M., Lojou E., Petillot Y., Abergel C. Biochemical and spectroscopic characterization of two new cytochromes isolated from Desulfuromonas acetoxidans. Biochemistry. 1997 Sep 2;36(35):10601–10608. doi: 10.1021/bi9707741. [DOI] [PubMed] [Google Scholar]
  10. Caccavo F., Jr, Coates J. D., Rossello-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol. 1996 Jun;165(6):370–376. doi: 10.1007/s002030050340. [DOI] [PubMed] [Google Scholar]
  11. Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R. Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol. 1998 Apr;64(4):1504–1509. doi: 10.1128/aem.64.4.1504-1509.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol. 1999 Oct;49(Pt 4):1615–1622. doi: 10.1099/00207713-49-4-1615. [DOI] [PubMed] [Google Scholar]
  13. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol. 2001 Jul;67(7):3180–3187. doi: 10.1128/AEM.67.7.3180-3187.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Czjzek M., Arnoux P., Haser R., Shepard W. Structure of cytochrome c7 from Desulfuromonas acetoxidans at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 2001 Apr 24;57(Pt 5):670–678. doi: 10.1107/s0907444901003481. [DOI] [PubMed] [Google Scholar]
  15. Galushko A. S., Schink B. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol. 2000 Nov;174(5):314–321. doi: 10.1007/s002030000208. [DOI] [PubMed] [Google Scholar]
  16. Gaspard S, Vazquez F, Holliger C. Localization and solubilization of the Iron(III) reductase of geobacter sulfurreducens . Appl Environ Microbiol. 1998 Sep;64(9):3188–3194. doi: 10.1128/aem.64.9.3188-3194.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gordon E. H., Pike A. D., Hill A. E., Cuthbertson P. M., Chapman S. K., Reid G. A. Identification and characterization of a novel cytochrome c(3) from Shewanella frigidimarina that is involved in Fe(III) respiration. Biochem J. 2000 Jul 1;349(Pt 1):153–158. doi: 10.1042/0264-6021:3490153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HORIO T., KAMEN M. D. Preparation and properties of three pure crystalline bacterial haem proteins. Biochim Biophys Acta. 1961 Apr 1;48:266–286. doi: 10.1016/0006-3002(61)90476-0. [DOI] [PubMed] [Google Scholar]
  19. Haser R., Pierrot M., Frey M., Payan F., Astier J. P., Bruschi M., Le Gall J. Structure and sequence of the multihaem cytochrome c3. Nature. 1979 Dec 20;282(5741):806–810. doi: 10.1038/282806a0. [DOI] [PubMed] [Google Scholar]
  20. Li Z., Clarke A. J., Beveridge T. J. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol. 1996 May;178(9):2479–2488. doi: 10.1128/jb.178.9.2479-2488.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lloyd J. R., Blunt-Harris E. L., Lovley D. R. The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). J Bacteriol. 1999 Dec;181(24):7647–7649. doi: 10.1128/jb.181.24.7647-7649.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159(4):336–344. doi: 10.1007/BF00290916. [DOI] [PubMed] [Google Scholar]
  23. Lovley D. R., Phillips E. J., Lonergan D. J., Widman P. K. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995 Jun;61(6):2132–2138. doi: 10.1128/aem.61.6.2132-2138.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lovley D. R., Widman P. K., Woodward J. C., Phillips E. J. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol. 1993 Nov;59(11):3572–3576. doi: 10.1128/aem.59.11.3572-3576.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Magnuson T. S., Isoyama N., Hodges-Myerson A. L., Davidson G., Maroney M. J., Geesey G. G., Lovley D. R. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem J. 2001 Oct 1;359(Pt 1):147–152. doi: 10.1042/0264-6021:3590147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muszyńska G., Dobrowolska G., Medin A., Ekman P., Porath J. O. Model studies on iron(III) ion affinity chromatography. II. Interaction of immobilized iron(III) ions with phosphorylated amino acids, peptides and proteins. J Chromatogr. 1992 Jun 26;604(1):19–28. doi: 10.1016/0021-9673(92)85524-w. [DOI] [PubMed] [Google Scholar]
  28. Myers C. R., Myers J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol. 1997 Feb;179(4):1143–1152. doi: 10.1128/jb.179.4.1143-1152.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Myers J. M., Myers C. R. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim Biophys Acta. 1998 Aug 14;1373(1):237–251. doi: 10.1016/s0005-2736(98)00111-4. [DOI] [PubMed] [Google Scholar]
  30. Pereira I. A., Pacheco I., Liu M. Y., Legall J., Xavier A. V., Teixeira M. Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Eur J Biochem. 1997 Sep 1;248(2):323–328. doi: 10.1111/j.1432-1033.1997.00323.x. [DOI] [PubMed] [Google Scholar]
  31. Seeliger S., Cord-Ruwisch R., Schink B. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol. 1998 Jul;180(14):3686–3691. doi: 10.1128/jb.180.14.3686-3691.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  33. Snoeyenbos-West OL, Nevin KP, Anderson RT, Lovley DR. Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. Microb Ecol. 2000 Feb;39(2):153–167. doi: 10.1007/s002480000018. [DOI] [PubMed] [Google Scholar]
  34. Stein L. Y., La Duc M. T., Grundl T. J., Nealson K. H. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol. 2001 Jan;3(1):10–18. doi: 10.1046/j.1462-2920.2001.00154.x. [DOI] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Verhagen M. F., O'Rourke T., Adams M. W. The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta. 1999 Aug 4;1412(3):212–229. doi: 10.1016/s0005-2728(99)00062-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES