Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):213–225. doi: 10.1042/BJ20020435

Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells.

Roger F Duncan 1, Hazel Peterson 1, Curt H Hagedorn 1, Alex Sevanian 1
PMCID: PMC1223074  PMID: 12215171

Abstract

Dysregulated cell growth can be caused by increased activity of protein synthesis eukaryotic initiation factor (eIF) 4E. Dysregulated cell growth is also characteristic of atherosclerosis. It is postulated that exposure of vascular cells, such as endothelial cells, smooth muscle cells and monocytes/macrophages, to oxidants, such as oxidized low-density lipoprotein (oxLDL), leads to the elaboration of growth factors and cytokines, which in turn results in smooth muscle cell hyperproliferation. To investigate whether activation of eIF4E might play a role in this hyperproliferative response, vascular cells were treated with oxLDL, oxidized lipid components of oxLDL and several model oxidants, including H(2)O(2) and dimethyl naphthoquinone. Exposure to each of these compounds led to a dose- and time-dependent increase in eIF4E phosphorylation in all three types of vascular cells, correlated with a modest increase in overall translation rate. No changes in eIF4EBP, eIF2 or eIF4B modification state were observed. Increased eIF4E phosphorylation was paralleled by increased presence of eIF4E in high-molecular-mass protein complexes characteristic of its most active form. Anti-oxidants at concentrations typically employed to block oxidant-induced cell signalling likewise promoted eIF4E phosphorylation. The results of this study indicate that increased eIF4E activity may contribute to the pathophysiological events in early atherogenesis by increasing the expression of translationally inefficient mRNAs encoding growth-promoting proteins.

Full Text

The Full Text of this article is available as a PDF (371.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995 Feb;25(2):155–161. doi: 10.1161/01.hyp.25.2.155. [DOI] [PubMed] [Google Scholar]
  2. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berliner J. A., Heinecke J. W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20(5):707–727. doi: 10.1016/0891-5849(95)02173-6. [DOI] [PubMed] [Google Scholar]
  4. De Benedetti A., Joshi-Barve S., Rinker-Schaeffer C., Rhoads R. E. Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol Cell Biol. 1991 Nov;11(11):5435–5445. doi: 10.1128/mcb.11.11.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Benedetti A., Rhoads R. E. Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8212–8216. doi: 10.1073/pnas.87.21.8212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duncan R. F., Song H. J. Striking multiplicity of eIF4E-BP1 phosphorylated isoforms identified by 2D gel electrophoresis regulation by heat shock. Eur J Biochem. 1999 Oct;265(2):728–743. doi: 10.1046/j.1432-1327.1999.00776.x. [DOI] [PubMed] [Google Scholar]
  7. Duncan R., Hershey J. W. Evaluation of isoelectric focusing running conditions during two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis: variation of gel patterns with changing conditions and optimized isoelectric focusing conditions. Anal Biochem. 1984 Apr;138(1):144–155. doi: 10.1016/0003-2697(84)90783-8. [DOI] [PubMed] [Google Scholar]
  8. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998 Apr;10(2):248–253. doi: 10.1016/s0955-0674(98)80147-6. [DOI] [PubMed] [Google Scholar]
  9. Flynn A., Proud C. G. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem. 1995 Sep 15;270(37):21684–21688. doi: 10.1074/jbc.270.37.21684. [DOI] [PubMed] [Google Scholar]
  10. Forman H. J., Kim E. Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: effects upon mitochondrial and plasma membrane potentials. Arch Biochem Biophys. 1989 Nov 1;274(2):443–452. doi: 10.1016/0003-9861(89)90457-8. [DOI] [PubMed] [Google Scholar]
  11. Fukunaga R., Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997 Apr 15;16(8):1921–1933. doi: 10.1093/emboj/16.8.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gingras A. C., Raught B., Gygi S. P., Niedzwiecka A., Miron M., Burley S. K., Polakiewicz R. D., Wyslouch-Cieszynska A., Aebersold R., Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001 Nov 1;15(21):2852–2864. doi: 10.1101/gad.912401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gingras A. C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
  14. Haghighat A., Mader S., Pause A., Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 1995 Nov 15;14(22):5701–5709. doi: 10.1002/j.1460-2075.1995.tb00257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haghighat A., Sonenberg N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5'-cap structure. J Biol Chem. 1997 Aug 29;272(35):21677–21680. doi: 10.1074/jbc.272.35.21677. [DOI] [PubMed] [Google Scholar]
  16. Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis. 1993 Mar;23 (Suppl 1):118–126. doi: 10.1159/000216921. [DOI] [PubMed] [Google Scholar]
  17. Hodis H. N., Kramsch D. M., Avogaro P., Bittolo-Bon G., Cazzolato G., Hwang J., Peterson H., Sevanian A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res. 1994 Apr;35(4):669–677. [PubMed] [Google Scholar]
  18. Joshi-Barve S., De Benedetti A., Rhoads R. E. Preferential translation of heat shock mRNAs in HeLa cells deficient in protein synthesis initiation factors eIF-4E and eIF-4 gamma. J Biol Chem. 1992 Oct 15;267(29):21038–21043. [PubMed] [Google Scholar]
  19. Joshi B., Yan R., Rhoads R. E. In vitro synthesis of human protein synthesis initiation factor 4 gamma and its localization on 43 and 48 S initiation complexes. J Biol Chem. 1994 Jan 21;269(3):2048–2055. [PubMed] [Google Scholar]
  20. Jurivich D. A., Chung J., Blenis J. Heat shock induces two distinct S6 protein kinase activities in quiescent mammalian fibroblasts. J Cell Physiol. 1991 Aug;148(2):252–259. doi: 10.1002/jcp.1041480210. [DOI] [PubMed] [Google Scholar]
  21. Kennedy I. M., Burdon R. H., Leader D. P. Heat shock causes diverse changes in the phosphorylation of the ribosomal proteins of mammalian cells. FEBS Lett. 1984 Apr 24;169(2):267–273. doi: 10.1016/0014-5793(84)80331-2. [DOI] [PubMed] [Google Scholar]
  22. Kevil C., Carter P., Hu B., DeBenedetti A. Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene. 1995 Dec 7;11(11):2339–2348. [PubMed] [Google Scholar]
  23. Kleijn M., Scheper G. C., Voorma H. O., Thomas A. A. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. doi: 10.1046/j.1432-1327.1998.2530531.x. [DOI] [PubMed] [Google Scholar]
  24. Knauf U., Tschopp C., Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol. 2001 Aug;21(16):5500–5511. doi: 10.1128/MCB.21.16.5500-5511.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koromilas A. E., Lazaris-Karatzas A., Sonenberg N. mRNAs containing extensive secondary structure in their 5' non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 1992 Nov;11(11):4153–4158. doi: 10.1002/j.1460-2075.1992.tb05508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lachance Pascal E. D., Miron Mathieu, Raught Brian, Sonenberg Nahum, Lasko Paul. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol Cell Biol. 2002 Mar;22(6):1656–1663. doi: 10.1128/MCB.22.6.1656-1663.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lamphear B. J., Panniers R. Cap binding protein complex that restores protein synthesis in heat-shocked Ehrlich cell lysates contains highly phosphorylated eIF-4E. J Biol Chem. 1990 Apr 5;265(10):5333–5336. [PubMed] [Google Scholar]
  28. Larsson R., Cerutti P. Oxidants induce phosphorylation of ribosomal protein S6. J Biol Chem. 1988 Nov 25;263(33):17452–17458. [PubMed] [Google Scholar]
  29. Lazaris-Karatzas A., Montine K. S., Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature. 1990 Jun 7;345(6275):544–547. doi: 10.1038/345544a0. [DOI] [PubMed] [Google Scholar]
  30. Lazaris-Karatzas A., Sonenberg N. The mRNA 5' cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol. 1992 Mar;12(3):1234–1238. doi: 10.1128/mcb.12.3.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marcotrigiano J., Gingras A. C., Sonenberg N., Burley S. K. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell. 1997 Jun 13;89(6):951–961. doi: 10.1016/s0092-8674(00)80280-9. [DOI] [PubMed] [Google Scholar]
  32. McKendrick L., Morley S. J., Pain V. M., Jagus R., Joshi B. Phosphorylation of eukaryotic initiation factor 4E (eIF4E) at Ser209 is not required for protein synthesis in vitro and in vivo. Eur J Biochem. 2001 Oct;268(20):5375–5385. doi: 10.1046/j.0014-2956.2001.02478.x. [DOI] [PubMed] [Google Scholar]
  33. Minich W. B., Balasta M. L., Goss D. J., Rhoads R. E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7668–7672. doi: 10.1073/pnas.91.16.7668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morley S. J., Rau M., Kay J. E., Pain V. M. Increased phosphorylation of eukaryotic initiation factor 4 alpha during early activation of T lymphocytes correlates with increased initiation factor 4F complex formation. Eur J Biochem. 1993 Nov 15;218(1):39–48. doi: 10.1111/j.1432-1033.1993.tb18349.x. [DOI] [PubMed] [Google Scholar]
  35. Pacifici E. H., McLeod L. L., Peterson H., Sevanian A. Linoleic acid hydroperoxide-induced peroxidation of endothelial cell phospholipids and cytotoxicity. Free Radic Biol Med. 1994 Oct;17(4):285–295. doi: 10.1016/0891-5849(94)90015-9. [DOI] [PubMed] [Google Scholar]
  36. Parkin N., Darveau A., Nicholson R., Sonenberg N. cis-acting translational effects of the 5' noncoding region of c-myc mRNA. Mol Cell Biol. 1988 Jul;8(7):2875–2883. doi: 10.1128/mcb.8.7.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Prats A. C., Vagner S., Prats H., Amalric F. cis-acting elements involved in the alternative translation initiation process of human basic fibroblast growth factor mRNA. Mol Cell Biol. 1992 Oct;12(10):4796–4805. doi: 10.1128/mcb.12.10.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rao C. D., Pech M., Robbins K. C., Aaronson S. A. The 5' untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol Cell Biol. 1988 Jan;8(1):284–292. doi: 10.1128/mcb.8.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rao G. N., Berk B. C. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res. 1992 Mar;70(3):593–599. doi: 10.1161/01.res.70.3.593. [DOI] [PubMed] [Google Scholar]
  40. Rao G. N. Oxidant stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis in smooth muscle cells. Lack of evidence for a role of H202 in angiotensin II-induced hypertrophy. J Biol Chem. 2000 Jun 2;275(22):16993–16999. doi: 10.1074/jbc.275.22.16993. [DOI] [PubMed] [Google Scholar]
  41. Rau M., Ohlmann T., Morley S. J., Pain V. M. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem. 1996 Apr 12;271(15):8983–8990. doi: 10.1074/jbc.271.15.8983. [DOI] [PubMed] [Google Scholar]
  42. Rinker-Schaeffer C. W., Graff J. R., De Benedetti A., Zimmer S. G., Rhoads R. E. Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int J Cancer. 1993 Nov 11;55(5):841–847. doi: 10.1002/ijc.2910550525. [DOI] [PubMed] [Google Scholar]
  43. Rosenwald I. B., Lazaris-Karatzas A., Sonenberg N., Schmidt E. V. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol. 1993 Dec;13(12):7358–7363. doi: 10.1128/mcb.13.12.7358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999 Jan 14;340(2):115–126. doi: 10.1056/NEJM199901143400207. [DOI] [PubMed] [Google Scholar]
  45. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  46. Rychlik W., Rush J. S., Rhoads R. E., Waechter C. J. Increased rate of phosphorylation-dephosphorylation of the translational initiation factor eIF-4E correlates with the induction of protein and glycoprotein biosynthesis in activated B lymphocytes. J Biol Chem. 1990 Nov 15;265(32):19467–19471. [PubMed] [Google Scholar]
  47. Scheper G. C., Mulder J., Kleijn M., Voorma H. O., Thomas A. A., van Wijk R. Inactivation of eIF2B and phosphorylation of PHAS-I in heat-shocked rat hepatoma cells. J Biol Chem. 1997 Oct 24;272(43):26850–26856. doi: 10.1074/jbc.272.43.26850. [DOI] [PubMed] [Google Scholar]
  48. Scheper Gert C., van Kollenburg Barbara, Hu Jianzhong, Luo Yunjing, Goss Dixie J., Proud Christopher G. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem. 2001 Nov 26;277(5):3303–3309. doi: 10.1074/jbc.M103607200. [DOI] [PubMed] [Google Scholar]
  49. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  50. Shantz L. M., Pegg A. E. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 1994 May 1;54(9):2313–2316. [PubMed] [Google Scholar]
  51. Sonenberg N. Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. Prog Nucleic Acid Res Mol Biol. 1988;35:173–207. doi: 10.1016/s0079-6603(08)60614-5. [DOI] [PubMed] [Google Scholar]
  52. Wang X., Flynn A., Waskiewicz A. J., Webb B. L., Vries R. G., Baines I. A., Cooper J. A., Proud C. G. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem. 1998 Apr 17;273(16):9373–9377. doi: 10.1074/jbc.273.16.9373. [DOI] [PubMed] [Google Scholar]
  53. Waskiewicz A. J., Flynn A., Proud C. G., Cooper J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997 Apr 15;16(8):1909–1920. doi: 10.1093/emboj/16.8.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wiese A. G., Pacifici R. E., Davies K. J. Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys. 1995 Apr 1;318(1):231–240. doi: 10.1006/abbi.1995.1225. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES