Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):357–362. doi: 10.1042/BJ20021352

Significant quantities of the glycolytic enzyme phosphoglycerate mutase are present in the cell wall of yeast Saccharomyces cerevisiae.

Precious Motshwene 1, Wolf Brandt 1, George Lindsey 1
PMCID: PMC1223075  PMID: 12238949

Abstract

NaOH was used to extract proteins from the cell walls of the yeast Saccharomyces cerevisiae. This treatment was shown not to disrupt yeast cells, as NaOH-extracted cells displayed a normal morphology upon electron microscopy. Moreover, extracted and untreated cells had qualitatively similar protein contents upon disruption. When yeast was grown in the presence of 1 M mannitol, two proteins were found to be present at an elevated concentration in the cell wall. These were found to be the late-embryogenic-abundant-like protein heat-shock protein 12 and the glycolytic enzyme phosphoglycerate mutase. The presence of phosphoglycerate mutase in the cell wall was confirmed by immunocytochemical analysis. Not only was the phosphoglycerate mutase in the yeast cell wall found to be active, but whole yeast cells were also able to convert 3-phosphoglycerate in the medium into ethanol, provided that the necessary cofactors were present.

Full Text

The Full Text of this article is available as a PDF (200.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alloush H. M., López-Ribot J. L., Masten B. J., Chaffin W. L. 3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology. 1997 Feb;143(Pt 2):321–330. doi: 10.1099/00221287-143-2-321. [DOI] [PubMed] [Google Scholar]
  2. Clauser K. R., Baker P., Burlingame A. L. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999 Jul 15;71(14):2871–2882. doi: 10.1021/ac9810516. [DOI] [PubMed] [Google Scholar]
  3. Delgado M. L., O'Connor J. E., Azorín I., Renau-Piqueras J., Gil M. L., Gozalbo D. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology. 2001 Feb;147(Pt 2):411–417. doi: 10.1099/00221287-147-2-411. [DOI] [PubMed] [Google Scholar]
  4. Edwards S. R., Braley R., Chaffin W. L. Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999 Aug 15;177(2):211–216. doi: 10.1111/j.1574-6968.1999.tb13734.x. [DOI] [PubMed] [Google Scholar]
  5. Gil-Navarro I., Gil M. L., Casanova M., O'Connor J. E., Martínez J. P., Gozalbo D. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol. 1997 Aug;179(16):4992–4999. doi: 10.1128/jb.179.16.4992-4999.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang S., Elliott R. C., Liu P. S., Koduri R. K., Weickmann J. L., Lee J. H., Blair L. C., Ghosh-Dastidar P., Bradshaw R. A., Bryan K. M. Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry. 1987 Dec 15;26(25):8242–8246. doi: 10.1021/bi00399a033. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lodder A. L., Lee T. K., Ballester R. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics. 1999 Aug;152(4):1487–1499. doi: 10.1093/genetics/152.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moerschell R. P., Hosokawa Y., Tsunasawa S., Sherman F. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem. 1990 Nov 15;265(32):19638–19643. [PubMed] [Google Scholar]
  10. Molina M., Gil C., Pla J., Arroyo J., Nombela C. Protein localisation approaches for understanding yeast cell wall biogenesis. Microsc Res Tech. 2000 Dec 15;51(6):601–612. doi: 10.1002/1097-0029(20001215)51:6<601::AID-JEMT9>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  11. Mormeneo S., Marcilla A., Iranzo M., Sentandreu R. Structural mannoproteins released by beta-elimination from Candida albicans cell walls. FEMS Microbiol Lett. 1994 Oct 15;123(1-2):131–136. doi: 10.1111/j.1574-6968.1994.tb07212.x. [DOI] [PubMed] [Google Scholar]
  12. Mrsa V., Tanner W. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast. 1999 Jul;15(10A):813–820. doi: 10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  13. Mrsă V., Seidl T., Gentzsch M., Tanner W. Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast. 1997 Sep 30;13(12):1145–1154. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1145::AID-YEA163>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  14. Norbeck J., Blomberg A. Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3-10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI > 7) proteins. Yeast. 1997 Dec;13(16):1519–1534. doi: 10.1002/(SICI)1097-0061(199712)13:16<1519::AID-YEA211>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  15. Pardo M., Ward M., Bains S., Molina M., Blackstock W., Gil C., Nombela C. A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis. 2000 Oct;21(16):3396–3410. doi: 10.1002/1522-2683(20001001)21:16<3396::AID-ELPS3396>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  16. Philip B., Levin D. E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol. 2001 Jan;21(1):271–280. doi: 10.1128/MCB.21.1.271-280.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rajavel M., Philip B., Buehrer B. M., Errede B., Levin D. E. Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jun;19(6):3969–3976. doi: 10.1128/mcb.19.6.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sales K., Brandt W., Rumbak E., Lindsey G. The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta. 2000 Feb 15;1463(2):267–278. doi: 10.1016/s0005-2736(99)00215-1. [DOI] [PubMed] [Google Scholar]
  19. Smits G. J., Kapteyn J. C., van den Ende H., Klis F. M. Cell wall dynamics in yeast. Curr Opin Microbiol. 1999 Aug;2(4):348–352. doi: 10.1016/s1369-5274(99)80061-7. [DOI] [PubMed] [Google Scholar]
  20. Teusink B., Passarge J., Reijenga C. A., Esgalhado E., van der Weijden C. C., Schepper M., Walsh M. C., Bakker B. M., van Dam K., Westerhoff H. V. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem. 2000 Sep;267(17):5313–5329. doi: 10.1046/j.1432-1327.2000.01527.x. [DOI] [PubMed] [Google Scholar]
  21. Tokuyasu K. T. Application of cryoultramicrotomy to immunocytochemistry. J Microsc. 1986 Aug;143(Pt 2):139–149. doi: 10.1111/j.1365-2818.1986.tb02772.x. [DOI] [PubMed] [Google Scholar]
  22. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
  23. de Nobel H., Ruiz C., Martin H., Morris W., Brul S., Molina M., Klis F. M. Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology. 2000 Sep;146(Pt 9):2121–2132. doi: 10.1099/00221287-146-9-2121. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES