Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):263–273. doi: 10.1042/BJ20021224

Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii.

Christina Schlüpen 1, Maria A Santos 1, Ulrike Weber 1, Albert de Graaf 1, José L Revuelta 1, K-Peter Stahmann 1
PMCID: PMC1223077  PMID: 12350229

Abstract

Riboflavin overproduction in the ascomycete Ashbya gossypii is limited by glycine, a precursor of purine biosynthesis, and therefore an indicator of glycine metabolism. Disruption of the SHM 2 gene, encoding a serine hydroxymethyltransferase, resulted in a significant increase in riboflavin productivity. Determination of the enzyme's specific activity revealed a reduction from 3 m-units/mg of protein to 0.5 m-unit/mg protein. The remaining activity was due to an isoenzyme encoded by SHM 1, which is probably mitochondrial. A hypothesis proposed to account for the enhanced riboflavin overproduction of SHM 2-disrupted mutants was that the flux from glycine to serine was reduced, thus leading to an elevated supply with the riboflavin precursor glycine. Evidence for the correctness of that hypothesis was obtained from (13)C-labelling experiments. When 500 microM 99% [1-(13)C]threonine was fed, more than 50% of the label was detected in C-1 of glycine resulting from threonine aldolase activity. More than 30% labelling determined in C-1 of serine can be explained by serine synthesis via serine hydroxymethyltransferase. Knockout of SHM 1 had no detectable effect on serine labelling, but disruption of SHM 2 led to a decrease in serine (2-5%) and an increase in glycine (59-67%) labelling, indicating a changed carbon flux.

Full Text

The Full Text of this article is available as a PDF (506.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appling D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991 Sep;5(12):2645–2651. doi: 10.1096/fasebj.5.12.1916088. [DOI] [PubMed] [Google Scholar]
  3. Arévalo-Rodríguez M., Calderón I. L., Holmberg S. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae. Yeast. 1999 Sep 30;15(13):1331–1345. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1331::AID-YEA460>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  4. Demain A. L. Riboflavin oversynthesis. Annu Rev Microbiol. 1972;26:369–388. doi: 10.1146/annurev.mi.26.100172.002101. [DOI] [PubMed] [Google Scholar]
  5. Förster C., Marienfeld S., Wilhelm R., Krämer R. Organelle purification and selective permeabilisation of the plasma membrane: two different approaches to study vacuoles of the filamentous fungus Ashbya gossypii. FEMS Microbiol Lett. 1998 Oct 15;167(2):209–214. doi: 10.1111/j.1574-6968.1998.tb13230.x. [DOI] [PubMed] [Google Scholar]
  6. Geller A. M., Kotb M. Y. A binding assay for serine hydroxymethyltransferase. Anal Biochem. 1989 Jul;180(1):120–125. doi: 10.1016/0003-2697(89)90098-5. [DOI] [PubMed] [Google Scholar]
  7. Hama H., Sumita Y., Kakutani Y., Tsuda M., Tsuchiya T. Target of serine inhibition in Escherichia coli. Biochem Biophys Res Commun. 1990 May 16;168(3):1211–1216. doi: 10.1016/0006-291x(90)91157-n. [DOI] [PubMed] [Google Scholar]
  8. Kastanos E. K., Woldman Y. Y., Appling D. R. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae. Biochemistry. 1997 Dec 2;36(48):14956–14964. doi: 10.1021/bi971610n. [DOI] [PubMed] [Google Scholar]
  9. McClung C. R., Davis C. R., Page K. M., Denome S. A. Characterization of the formate (for) locus, which encodes the cytosolic serine hydroxymethyltransferase of Neurospora crassa. Mol Cell Biol. 1992 Apr;12(4):1412–1421. doi: 10.1128/mcb.12.4.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McNeil J. B., Flynn J., Tsao N., Monschau N., Stahmann K., Haynes R. H., McIntosh E. M., Pearlman R. E. Glycine metabolism in Candida albicans: characterization of the serine hydroxymethyltransferase (SHM1, SHM2) and threonine aldolase (GLY1) genes. Yeast. 2000 Jan 30;16(2):167–175. doi: 10.1002/(SICI)1097-0061(20000130)16:2<167::AID-YEA519>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  11. McNeil J. B., McIntosh E. M., Taylor B. V., Zhang F. R., Tang S., Bognar A. L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem. 1994 Mar 25;269(12):9155–9165. [PubMed] [Google Scholar]
  12. Mehta S. U., Mattoo A. K., Modi V. V. Ribitol and flavinogenesis in Eremothecium ashbyii. Biochem J. 1972 Nov;130(1):159–166. doi: 10.1042/bj1300159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Messenguy F., Colin D., ten Have J. P. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem. 1980 Jul;108(2):439–447. doi: 10.1111/j.1432-1033.1980.tb04740.x. [DOI] [PubMed] [Google Scholar]
  14. Monschau N., Sahm H., Stahmann K. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol. 1998 Nov;64(11):4283–4290. doi: 10.1128/aem.64.11.4283-4290.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F. Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J. 1999 Oct;20(2):197–205. doi: 10.1046/j.1365-313x.1999.00591.x. [DOI] [PubMed] [Google Scholar]
  16. PLAUT G. W. Biosynthesis of riboflavin. I. Incorporation of C14-labeled compounds into rings B and C. J Biol Chem. 1954 Jun;208(2):513–520. [PubMed] [Google Scholar]
  17. Piper M. D., Hong S. P., Ball G. E., Dawes I. W. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae. J Biol Chem. 2000 Oct 6;275(40):30987–30995. doi: 10.1074/jbc.M004248200. [DOI] [PubMed] [Google Scholar]
  18. Prillinger H., Schweigkofler W., Breitenbach M., Briza P., Staudacher E., Lopandic K., Molnár O., Weigang F., Ibl M., Ellinger A. Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast. 1997 Aug;13(10):945–960. doi: 10.1002/(SICI)1097-0061(199708)13:10<945::AID-YEA150>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  19. Ramos C., Delgado M. A., Calderon I. L. Inhibition by different amino acids of the aspartate kinase and the homoserine kinase of the yeast Saccharomyces cerevisiae. FEBS Lett. 1991 Jan 14;278(1):123–126. doi: 10.1016/0014-5793(91)80098-n. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schirch D., Delle Fratte S., Iurescia S., Angelaccio S., Contestabile R., Bossa F., Schirch V. Function of the active-site lysine in Escherichia coli serine hydroxymethyltransferase. J Biol Chem. 1993 Nov 5;268(31):23132–23138. [PubMed] [Google Scholar]
  22. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  23. Stahmann K. P., Revuelta J. L., Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol. 2000 May;53(5):509–516. doi: 10.1007/s002530051649. [DOI] [PubMed] [Google Scholar]
  24. Stauffer G. V., Plamann M. D., Stauffer L. T. Construction and expression of hybrid plasmids containing the Escherichia coli glyA genes. Gene. 1981 Jun-Jul;14(1-2):63–72. doi: 10.1016/0378-1119(81)90148-7. [DOI] [PubMed] [Google Scholar]
  25. Vandamme E. J. Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Technol Biotechnol. 1992;53(4):313–327. doi: 10.1002/jctb.280530402. [DOI] [PubMed] [Google Scholar]
  26. Wendisch V. F., de Graaf A. A., Sahm H. Accurate determination of 13C enrichments in nonprotonated carbon atoms of isotopically enriched amino acids by 1H nuclear magnetic resonance. Anal Biochem. 1997 Feb 15;245(2):196–202. doi: 10.1006/abio.1996.9977. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES