Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):275–285. doi: 10.1042/BJ20021455

Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

Jürgen Ruff 1, Karin Denger 1, Alasdair M Cook 1
PMCID: PMC1223080  PMID: 12358600

Abstract

The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum.

Full Text

The Full Text of this article is available as a PDF (357.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bar-Ilan A., Balan V., Tittmann K., Golbik R., Vyazmensky M., Hübner G., Barak Z., Chipman D. M. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry. 2001 Oct 2;40(39):11946–11954. doi: 10.1021/bi0104524. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cameron B., Guilhot C., Blanche F., Cauchois L., Rouyez M. C., Rigault S., Levy-Schil S., Crouzet J. Genetic and sequence analyses of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol. 1991 Oct;173(19):6058–6065. doi: 10.1128/jb.173.19.6058-6065.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chien C., Leadbetter E. R., Godchaux W. Taurine-sulfur assimilation and taurine-pyruvate aminotransferase activity in anaerobic bacteria. Appl Environ Microbiol. 1997 Aug;63(8):3021–3024. doi: 10.1128/aem.63.8.3021-3024.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook A. M., Laue H., Junker F. Microbial desulfonation. FEMS Microbiol Rev. 1998 Dec;22(5):399–419. doi: 10.1111/j.1574-6976.1998.tb00378.x. [DOI] [PubMed] [Google Scholar]
  7. Cunningham C., Tipton K. F., Dixon H. B. Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J. 1998 Mar 1;330(Pt 2):939–945. doi: 10.1042/bj3300939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denger K., Cook A. M. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1. Arch Microbiol. 2001 Jul;176(1-2):89–95. doi: 10.1007/s002030100296. [DOI] [PubMed] [Google Scholar]
  9. Denger K., Laue H., Cook A. M. Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology. 1997 Jun;143(Pt 6):1919–1924. doi: 10.1099/00221287-143-6-1919. [DOI] [PubMed] [Google Scholar]
  10. Denger K., Laue H., Cook A. M. Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch Microbiol. 1997 Oct;168(4):297–301. doi: 10.1007/s002030050502. [DOI] [PubMed] [Google Scholar]
  11. Denger K., Ruff J., Rein U., Cook A. M. Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J. 2001 Jul 15;357(Pt 2):581–586. doi: 10.1042/0264-6021:3570581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorhölter F. J., Hernandez-Lucas I., Becker A., Cowie A., Gouzy J. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A. 2001 Jul 31;98(17):9889–9894. doi: 10.1073/pnas.161294698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foss S., Heyen U., Harder J. Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst Appl Microbiol. 1998 Jun;21(2):237–244. doi: 10.1016/s0723-2020(98)80028-3. [DOI] [PubMed] [Google Scholar]
  14. Huxtable R. J. Physiological actions of taurine. Physiol Rev. 1992 Jan;72(1):101–163. doi: 10.1152/physrev.1992.72.1.101. [DOI] [PubMed] [Google Scholar]
  15. Jeffries B. J. Visual Acuteness = 17/8 to 47/16. Trans Am Ophthalmol Soc. 1874;2:158–160. [PMC free article] [PubMed] [Google Scholar]
  16. Kappler Ulrike, Huston Wilhelmina M., McEwan Alastair G. Control of dimethylsulfoxide reductase expression in Rhodobacter capsulatus: the role of carbon metabolites and the response regulators DorR and RegA. Microbiology. 2002 Feb;148(Pt 2):605–614. doi: 10.1099/00221287-148-2-605. [DOI] [PubMed] [Google Scholar]
  17. Kertesz M. A. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev. 2000 Apr;24(2):135–175. doi: 10.1016/S0168-6445(99)00033-9. [DOI] [PubMed] [Google Scholar]
  18. Kondo H., Anada H., Osawa K., Ishimoto M. Formation of sulfoacetaldehyde from taurine in bacterial extracts. J Biochem. 1971 Mar;69(3):621–623. [PubMed] [Google Scholar]
  19. Kondo H., Ishimoto M. Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem. 1972 Aug;72(2):487–489. doi: 10.1093/oxfordjournals.jbchem.a129926. [DOI] [PubMed] [Google Scholar]
  20. Kondo H., Ishimoto M. Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate. J Biochem. 1975 Aug;78(2):317–325. doi: 10.1093/oxfordjournals.jbchem.a130910. [DOI] [PubMed] [Google Scholar]
  21. Kondo H., Ishimoto M. Taurine dehydrogenase. Methods Enzymol. 1987;143:496–499. doi: 10.1016/0076-6879(87)43089-9. [DOI] [PubMed] [Google Scholar]
  22. Laue H., Cook A. M. Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. Eur J Biochem. 2000 Dec;267(23):6841–6848. doi: 10.1046/j.1432-1033.2000.01782.x. [DOI] [PubMed] [Google Scholar]
  23. Laue H., Denger K., Cook A. M. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol. 1997 May;63(5):2016–2021. doi: 10.1128/aem.63.5.2016-2021.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lie T. J., Pitta T., Leadbetter E. R., Godchaux W., 3rd, Leadbetter J. R. Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol. 1996 Sep;166(3):204–210. doi: 10.1007/s002030050376. [DOI] [PubMed] [Google Scholar]
  25. Masepohl B., Führer F., Klipp W. Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol Lett. 2001 Nov 27;205(1):105–111. doi: 10.1111/j.1574-6968.2001.tb10932.x. [DOI] [PubMed] [Google Scholar]
  26. McCleary W. R., Stock J. B. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem. 1994 Dec 16;269(50):31567–31572. [PubMed] [Google Scholar]
  27. Meile L., Rohr L. M., Geissmann T. A., Herensperger M., Teuber M. Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol. 2001 May;183(9):2929–2936. doi: 10.1128/JB.183.9.2929-2936.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mikosch C. A., Denger K., Schäfer E. M., Cook A. M. Anaerobic oxidations of cysteate: degradation via L-cysteate:2-oxoglutarate aminotransferase in Paracoccus pantotrophus. Microbiology. 1999 May;145(Pt 5):1153–1160. doi: 10.1099/13500872-145-5-1153. [DOI] [PubMed] [Google Scholar]
  29. Muller Y. A., Lindqvist Y., Furey W., Schulz G. E., Jordan F., Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure. 1993 Oct 15;1(2):95–103. doi: 10.1016/0969-2126(93)90025-c. [DOI] [PubMed] [Google Scholar]
  30. Neuhoff V., Arold N., Taube D., Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988 Jun;9(6):255–262. doi: 10.1002/elps.1150090603. [DOI] [PubMed] [Google Scholar]
  31. Reichenbecher W, Kelly DP, Murrell JC. Desulfonation of propanesulfonic acid by comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol. 1999 Dec;172(6):387–392. doi: 10.1007/s002030050775. [DOI] [PubMed] [Google Scholar]
  32. Schleheck D., Dong W., Denger K., Heinzle E., Cook A. M. An alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ Microbiol. 2000 May;66(5):1911–1916. doi: 10.1128/aem.66.5.1911-1916.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schläfli H. R., Weiss M. A., Leisinger T., Cook A. M. Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol. 1994 Nov;176(21):6644–6652. doi: 10.1128/jb.176.21.6644-6652.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  35. Sedewitz B., Schleifer K. H., Götz F. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol. 1984 Oct;160(1):462–465. doi: 10.1128/jb.160.1.462-465.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shimamoto G., Berk R. S. Taurine catabolism. II. biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement. Biochim Biophys Acta. 1980 Sep 17;632(1):121–130. doi: 10.1016/0304-4165(80)90255-x. [DOI] [PubMed] [Google Scholar]
  37. van der Ploeg J. R., Eichhorn E., Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001 Jul;176(1-2):1–8. doi: 10.1007/s002030100298. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES