Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):249–254. doi: 10.1042/BJ20020886

Mutation of the important Tyr-33 residue of chicken avidin: functional and structural consequences.

Ari T Marttila 1, Vesa P Hytönen 1, Olli H Laitinen 1, Edward A Bayer 1, Meir Wilchek 1, Markku S Kulomaa 1
PMCID: PMC1223082  PMID: 12358604

Abstract

The strong interaction between avidin and biotin is so tight (dissociation constant 10(-15) M) that conditions usually sufficient for protein denaturing fail to dislodge biotin from the avidin-biotin complex. This kind of irreversible binding hinders the use of avidin in applications such as affinity purification or protein immobilization. To address this concern, we have constructed a series of mutants of the strategically positioned Tyr-33 in order to study the role of this residue in biotin binding, and to create avidin variants with more reversible ligand-binding properties. Unexpectedly, an avidin mutant in which Tyr-33 was replaced with phenylalanine (Avm-Y33F) displayed similar biotin-binding characteristics to the native avidin, indicating that the hydrogen bond formed between the hydroxy group of Tyr-33 and the carbonyl oxygen of biotin is not as important for the tight binding of biotin as previously suggested. In terms of the reversibility of biotin binding, Avm-Y33H was the most successful substitution constructed in this study. Interestingly, the binding of this mutant exhibited clear pH-dependence, since at neutral pH it bound to the biotin surface in an irreversible fashion, whereas, at pH 9, 50% of the bound protein could be released with free biotin. Furthermore, although Tyr-33 is located relatively distant from the monomer-monomer interfaces, the mutagenesis of this residue also weakened the quaternary structure of avidin, indicating that the high ligand binding and the high stability of avidin have evolved together and it is difficult to modify one without affecting the other.

Full Text

The Full Text of this article is available as a PDF (137.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airenne K. J., Oker-Blom C., Marjomäki V. S., Bayer E. A., Wilchek M., Kulomaa M. S. Production of biologically active recombinant avidin in baculovirus-infected insect cells. Protein Expr Purif. 1997 Feb;9(1):100–108. doi: 10.1006/prep.1996.0660. [DOI] [PubMed] [Google Scholar]
  2. Bayer E. A., Ehrlich-Rogozinski S., Wilchek M. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin. Electrophoresis. 1996 Aug;17(8):1319–1324. doi: 10.1002/elps.1150170808. [DOI] [PubMed] [Google Scholar]
  3. Chilkoti A., Tan P. H., Stayton P. S. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1754–1758. doi: 10.1073/pnas.92.5.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gitlin G., Bayer E. A., Wilchek M. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site. Biochem J. 1990 Jul 15;269(2):527–530. doi: 10.1042/bj2690527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gope M. L., Keinänen R. A., Kristo P. A., Conneely O. M., Beattie W. G., Zarucki-Schulz T., O'Malley B. W., Kulomaa M. S. Molecular cloning of the chicken avidin cDNA. Nucleic Acids Res. 1987 Apr 24;15(8):3595–3606. doi: 10.1093/nar/15.8.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
  7. Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
  8. Hendrickson W. A., Pähler A., Smith J. L., Satow Y., Merritt E. A., Phizackerley R. P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2190–2194. doi: 10.1073/pnas.86.7.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hiller Y., Bayer E. A., Wilchek M. Studies on the biotin-binding site of avidin. Minimized fragments that bind biotin. Biochem J. 1991 Sep 1;278(Pt 2):573–585. doi: 10.1042/bj2780573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofmann K., Wood S. W., Brinton C. C., Montibeller J. A., Finn F. M. Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4666–4668. doi: 10.1073/pnas.77.8.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt L. T., Barker W. C. Avidin-like domain in an epidermal growth factor homolog from a sea urchin. FASEB J. 1989 Apr;3(6):1760–1764. doi: 10.1096/fasebj.3.6.2784773. [DOI] [PubMed] [Google Scholar]
  12. Hursh D. A., Andrews M. E., Raff R. A. A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science. 1987 Sep 18;237(4821):1487–1490. doi: 10.1126/science.3498216. [DOI] [PubMed] [Google Scholar]
  13. Katz B. A. Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH. J Mol Biol. 1997 Dec 19;274(5):776–800. doi: 10.1006/jmbi.1997.1444. [DOI] [PubMed] [Google Scholar]
  14. Klumb L. A., Chu V., Stayton P. S. Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex. Biochemistry. 1998 May 26;37(21):7657–7663. doi: 10.1021/bi9803123. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Laitinen O. H., Airenne K. J., Marttila A. T., Kulik T., Porkka E., Bayer E. A., Wilchek M., Kulomaa M. S. Mutation of a critical tryptophan to lysine in avidin or streptavidin may explain why sea urchin fibropellin adopts an avidin-like domain. FEBS Lett. 1999 Nov 12;461(1-2):52–58. doi: 10.1016/s0014-5793(99)01423-4. [DOI] [PubMed] [Google Scholar]
  17. Laitinen O. H., Marttila A. T., Airenne K. J., Kulik T., Livnah O., Bayer E. A., Wilchek M., Kulomaa M. S. Biotin induces tetramerization of a recombinant monomeric avidin. A model for protein-protein interactions. J Biol Chem. 2000 Nov 13;276(11):8219–8224. doi: 10.1074/jbc.M007930200. [DOI] [PubMed] [Google Scholar]
  18. Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marttila A. T., Airenne K. J., Laitinen O. H., Kulik T., Bayer E. A., Wilchek M., Kulomaa M. S. Engineering of chicken avidin: a progressive series of reduced charge mutants. FEBS Lett. 1998 Dec 18;441(2):313–317. doi: 10.1016/s0014-5793(98)01570-1. [DOI] [PubMed] [Google Scholar]
  20. Marttila A. T., Laitinen O. H., Airenne K. J., Kulik T., Bayer E. A., Wilchek M., Kulomaa M. S. Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett. 2000 Feb 4;467(1):31–36. doi: 10.1016/s0014-5793(00)01119-4. [DOI] [PubMed] [Google Scholar]
  21. Morag E., Bayer E. A., Wilchek M. Reversibility of biotin-binding by selective modification of tyrosine in avidin. Biochem J. 1996 May 15;316(Pt 1):193–199. doi: 10.1042/bj3160193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orr G. A. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J Biol Chem. 1981 Jan 25;256(2):761–766. [PubMed] [Google Scholar]
  23. Pugliese L., Coda A., Malcovati M., Bolognesi M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J Mol Biol. 1993 Jun 5;231(3):698–710. doi: 10.1006/jmbi.1993.1321. [DOI] [PubMed] [Google Scholar]
  24. Pugliese L., Malcovati M., Coda A., Bolognesi M. Crystal structure of apo-avidin from hen egg-white. J Mol Biol. 1994 Jan 7;235(1):42–46. doi: 10.1016/s0022-2836(05)80010-5. [DOI] [PubMed] [Google Scholar]
  25. Qureshi M. H., Yeung J. C., Wu S. C., Wong S. L. Development and characterization of a series of soluble tetrameric and monomeric streptavidin muteins with differential biotin binding affinities. J Biol Chem. 2001 Oct 2;276(49):46422–46428. doi: 10.1074/jbc.M107398200. [DOI] [PubMed] [Google Scholar]
  26. Sakahara H, Saga T. Avidin-biotin system for delivery of diagnostic agents. Adv Drug Deliv Rev. 1999 Apr 5;37(1-3):89–101. doi: 10.1016/s0169-409x(98)00101-x. [DOI] [PubMed] [Google Scholar]
  27. Sano T., Cantor C. R. Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3180–3184. doi: 10.1073/pnas.92.8.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weber P. C., Ohlendorf D. H., Wendoloski J. J., Salemme F. R. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989 Jan 6;243(4887):85–88. doi: 10.1126/science.2911722. [DOI] [PubMed] [Google Scholar]
  29. Wilchek M., Bayer E. A. Foreword and introduction to the book (strept)avidin-biotin system. Biomol Eng. 1999 Dec 31;16(1-4):1–4. doi: 10.1016/s1050-3862(99)00032-7. [DOI] [PubMed] [Google Scholar]
  30. Wilchek M., Bayer E. A. Introduction to avidin-biotin technology. Methods Enzymol. 1990;184:5–13. doi: 10.1016/0076-6879(90)84256-g. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES