Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):375–386. doi: 10.1042/BJ20021431

Myeloid zinc finger (MZF)-like, Kruppel-like and Ets families of transcription factors determine the cell-specific expression of mouse extracellular superoxide dismutase.

Igor N Zelko 1, Rodney J Folz 1
PMCID: PMC1223085  PMID: 12374566

Abstract

Extracellular superoxide dismutase (EC-SOD or SOD3) is an important protective enzyme against the toxicity of superoxide radicals that are produced under both physiological and pathophysiological conditions. We have isolated and characterized over 11 kb of the mouse EC-SOD gene and its 5'- and 3'-flanking regions. The gene consists of two exons, with the entire coding region located within exon 2. In order to study the mechanism of cell-specific gene regulation for mouse EC-SOD, we characterized 2500 bp of its 5'-flanking region using cultured cells derived from mouse lung fibroblasts (MLg), kidney medulla (mIMCD3) and hepatocytes (Hepa 1-6). Real-time PCR showed that basal expression of EC-SOD was considerably higher in MLg cells compared with the other cell types. Reporter-gene assays revealed that the proximal promoter region was sufficient to support this high expression in MLg cells. Although no obvious TATA box was identified, our results show that a highly purine-rich region from -208 to +104 contains active binding sites for both the Kruppel-like and Ets families of transcription factors. Using electrophoretic mobility shift, DNase footprinting and reporter gene assays, we identified myeloid zinc finger 1 and gut-enriched Kruppel-like-factor-like nuclear transcription factors as repressors of EC-SOD expression, whereas nuclear transcription factors from the Ets family, such as Elf-1 and GA-binding protein alpha and beta, were potent activators of EC-SOD transcription. We propose a model that highlights competition between Ets activators and Kruppel-like repressors within the proximal promoter region that determines the level of EC-SOD expression in a particular cell type.

Full Text

The Full Text of this article is available as a PDF (533.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieker J. J. Krüppel-like factors: three fingers in many pies. J Biol Chem. 2001 Jul 6;276(37):34355–34358. doi: 10.1074/jbc.R100043200. [DOI] [PubMed] [Google Scholar]
  2. Bowler Russell P., Nicks Mike, Olsen Dorte Aa, Thøgersen Ida B., Valnickova Zuzana, Højrup Peter, Franzusoff Alex, Enghild Jan J., Crapo James D. Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase. J Biol Chem. 2002 Feb 22;277(19):16505–16511. doi: 10.1074/jbc.M105409200. [DOI] [PubMed] [Google Scholar]
  3. Brown T. A., McKnight S. L. Specificities of protein-protein and protein-DNA interaction of GABP alpha and two newly defined ets-related proteins. Genes Dev. 1992 Dec;6(12B):2502–2512. doi: 10.1101/gad.6.12b.2502. [DOI] [PubMed] [Google Scholar]
  4. Böttinger E. P., Shelley C. S., Farokhzad O. C., Arnaout M. A. The human beta 2 integrin CD18 promoter consists of two inverted Ets cis elements. Mol Cell Biol. 1994 Apr;14(4):2604–2615. doi: 10.1128/mcb.14.4.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlsson L. M., Jonsson J., Edlund T., Marklund S. L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6264–6268. doi: 10.1073/pnas.92.14.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chui D. H., Tang W., Orkin S. H. cDNA cloning of murine Nrf 2 gene, coding for a p45 NF-E2 related transcription factor. Biochem Biophys Res Commun. 1995 Apr 6;209(1):40–46. doi: 10.1006/bbrc.1995.1467. [DOI] [PubMed] [Google Scholar]
  7. Enghild J. J., Thogersen I. B., Oury T. D., Valnickova Z., Hojrup P., Crapo J. D. The heparin-binding domain of extracellular superoxide dismutase is proteolytically processed intracellularly during biosynthesis. J Biol Chem. 1999 May 21;274(21):14818–14822. doi: 10.1074/jbc.274.21.14818. [DOI] [PubMed] [Google Scholar]
  8. Folz R. J., Abushamaa A. M., Suliman H. B. Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin Invest. 1999 Apr;103(7):1055–1066. doi: 10.1172/JCI3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Folz R. J., Crapo J. D. Extracellular superoxide dismutase (SOD3): tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene. Genomics. 1994 Jul 1;22(1):162–171. doi: 10.1006/geno.1994.1357. [DOI] [PubMed] [Google Scholar]
  10. Folz R. J., Guan J., Seldin M. F., Oury T. D., Enghild J. J., Crapo J. D. Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am J Respir Cell Mol Biol. 1997 Oct;17(4):393–403. doi: 10.1165/ajrcmb.17.4.2826. [DOI] [PubMed] [Google Scholar]
  11. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  12. Fukai T., Siegfried M. R., Ushio-Fukai M., Cheng Y., Kojda G., Harrison D. G. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000 Jun;105(11):1631–1639. doi: 10.1172/JCI9551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukai T., Siegfried M. R., Ushio-Fukai M., Griendling K. K., Harrison D. G. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res. 1999 Jul 9;85(1):23–28. doi: 10.1161/01.res.85.1.23. [DOI] [PubMed] [Google Scholar]
  14. Hromas R., Collins S. J., Hickstein D., Raskind W., Deaven L. L., O'Hara P., Hagen F. S., Kaushansky K. A retinoic acid-responsive human zinc finger gene, MZF-1, preferentially expressed in myeloid cells. J Biol Chem. 1991 Aug 5;266(22):14183–14187. [PubMed] [Google Scholar]
  15. Hromas R., Morris J., Cornetta K., Berebitsky D., Davidson A., Sha M., Sledge G., Rauscher F., 3rd Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res. 1995 Aug 15;55(16):3610–3614. [PubMed] [Google Scholar]
  16. Karlsson K., Marklund S. L. Extracellular superoxide dismutase in the vascular system of mammals. Biochem J. 1988 Oct 1;255(1):223–228. [PMC free article] [PubMed] [Google Scholar]
  17. Lahiri D. K., Ge Y. Electrophoretic mobility shift assay for the detection of specific DNA-protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue. Brain Res Brain Res Protoc. 2000 Jul;5(3):257–265. doi: 10.1016/s1385-299x(00)00021-0. [DOI] [PubMed] [Google Scholar]
  18. Lelièvre E., Lionneton F., Soncin F., Vandenbunder B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol. 2001 Apr;33(4):391–407. doi: 10.1016/s1357-2725(01)00025-5. [DOI] [PubMed] [Google Scholar]
  19. Lécine P., Algarté M., Rameil P., Beadling C., Bucher P., Nabholz M., Imbert J. Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor alpha gene. Mol Cell Biol. 1996 Dec;16(12):6829–6840. doi: 10.1128/mcb.16.12.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marklund S. L. Expression of extracellular superoxide dismutase by human cell lines. Biochem J. 1990 Feb 15;266(1):213–219. doi: 10.1042/bj2660213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marklund S. L., Holme E., Hellner L. Superoxide dismutase in extracellular fluids. Clin Chim Acta. 1982 Nov 24;126(1):41–51. doi: 10.1016/0009-8981(82)90360-6. [DOI] [PubMed] [Google Scholar]
  22. Marklund S. L. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7634–7638. doi: 10.1073/pnas.79.24.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martin M. E., Chinenov Y., Yu M., Schmidt T. K., Yang X. Y. Redox regulation of GA-binding protein-alpha DNA binding activity. J Biol Chem. 1996 Oct 11;271(41):25617–25623. doi: 10.1074/jbc.271.41.25617. [DOI] [PubMed] [Google Scholar]
  24. McCord J. M., Fridovich I. Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med. 1988;5(5-6):363–369. doi: 10.1016/0891-5849(88)90109-8. [DOI] [PubMed] [Google Scholar]
  25. Morris J. F., Hromas R., Rauscher F. J., 3rd Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol. 1994 Mar;14(3):1786–1795. doi: 10.1128/mcb.14.3.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mruk D. D., Cheng C. Y. In vitro regulation of extracellular superoxide dismutase in sertoli cells. Life Sci. 2000;67(2):133–145. doi: 10.1016/s0024-3205(00)00609-3. [DOI] [PubMed] [Google Scholar]
  27. Nye J. A., Petersen J. M., Gunther C. V., Jonsen M. D., Graves B. J. Interaction of murine ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Dev. 1992 Jun;6(6):975–990. doi: 10.1101/gad.6.6.975. [DOI] [PubMed] [Google Scholar]
  28. Oury T. D., Chang L. Y., Marklund S. L., Day B. J., Crapo J. D. Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest. 1994 Jun;70(6):889–898. [PubMed] [Google Scholar]
  29. Perrotti D., Melotti P., Skorski T., Casella I., Peschle C., Calabretta B. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol Cell Biol. 1995 Nov;15(11):6075–6087. doi: 10.1128/mcb.15.11.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robertson K. A., Hill D. P., Kelley M. R., Tritt R., Crum B., Van Epps S., Srour E., Rice S., Hromas R. The myeloid zinc finger gene (MZF-1) delays retinoic acid-induced apoptosis and differentiation in myeloid leukemia cells. Leukemia. 1998 May;12(5):690–698. doi: 10.1038/sj.leu.2401005. [DOI] [PubMed] [Google Scholar]
  31. Sander T. L., Haas A. L., Peterson M. J., Morris J. F. Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations. J Biol Chem. 2000 Apr 28;275(17):12857–12867. doi: 10.1074/jbc.275.17.12857. [DOI] [PubMed] [Google Scholar]
  32. Sandström J., Carlsson L., Marklund S. L., Edlund T. The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity. J Biol Chem. 1992 Sep 5;267(25):18205–18209. [PubMed] [Google Scholar]
  33. Sarafova S., Siu G. A potential role for Elf-1 in CD4 promoter function. J Biol Chem. 1999 Jun 4;274(23):16126–16134. doi: 10.1074/jbc.274.23.16126. [DOI] [PubMed] [Google Scholar]
  34. Schuh R., Aicher W., Gaul U., Côté S., Preiss A., Maier D., Seifert E., Nauber U., Schröder C., Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell. 1986 Dec 26;47(6):1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
  35. Schweppe R. E., Gutierrez-Hartmann A. Pituitary Ets-1 and GABP bind to the growth factor regulatory sites of the rat prolactin promoter. Nucleic Acids Res. 2001 Mar 1;29(5):1251–1260. doi: 10.1093/nar/29.5.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sementchenko V. I., Watson D. K. Ets target genes: past, present and future. Oncogene. 2000 Dec 18;19(55):6533–6548. doi: 10.1038/sj.onc.1204034. [DOI] [PubMed] [Google Scholar]
  37. Senapathy P., Shapiro M. B., Harris N. L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 1990;183:252–278. doi: 10.1016/0076-6879(90)83018-5. [DOI] [PubMed] [Google Scholar]
  38. Shields J. M., Yang V. W. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res. 1998 Feb 1;26(3):796–802. doi: 10.1093/nar/26.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strålin P., Karlsson K., Johansson B. O., Marklund S. L. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2032–2036. doi: 10.1161/01.atv.15.11.2032. [DOI] [PubMed] [Google Scholar]
  40. Strålin P., Marklund S. L. Multiple cytokines regulate the expression of extracellular superoxide dismutase in human vascular smooth muscle cells. Atherosclerosis. 2000 Aug;151(2):433–441. doi: 10.1016/s0021-9150(99)00427-x. [DOI] [PubMed] [Google Scholar]
  41. Su W. Y., Folz R., Chen J. S., Crapo J. D., Chang L. Y. Extracellular superoxide dismutase mRNA expressions in the human lung by in situ hybridization. Am J Respir Cell Mol Biol. 1997 Feb;16(2):162–170. doi: 10.1165/ajrcmb.16.2.9032123. [DOI] [PubMed] [Google Scholar]
  42. Virbasius J. V., Virbasius C. A., Scarpulla R. C. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 1993 Mar;7(3):380–392. doi: 10.1101/gad.7.3.380. [DOI] [PubMed] [Google Scholar]
  43. Wang C. Y., Bassuk A. G., Boise L. H., Thompson C. B., Bravo R., Leiden J. M. Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors. Mol Cell Biol. 1994 Feb;14(2):1153–1159. doi: 10.1128/mcb.14.2.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Willems J., Zwijsen A., Slegers H., Nicolaï S., Bettadapura J., Raymackers J., Scarcez T. Purification and sequence of rat extracellular superoxide dismutase B secreted by C6 glioma. J Biol Chem. 1993 Nov 25;268(33):24614–24621. [PubMed] [Google Scholar]
  45. Wingender E., Chen X., Hehl R., Karas H., Liebich I., Matys V., Meinhardt T., Prüss M., Reuter I., Schacherer F. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000 Jan 1;28(1):316–319. doi: 10.1093/nar/28.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yu M., Yang X. Y., Schmidt T., Chinenov Y., Wang R., Martin M. E. GA-binding protein-dependent transcription initiator elements. Effect of helical spacing between polyomavirus enhancer a factor 3(PEA3)/Ets-binding sites on initiator activity. J Biol Chem. 1997 Nov 14;272(46):29060–29067. doi: 10.1074/jbc.272.46.29060. [DOI] [PubMed] [Google Scholar]
  47. Zelko Igor N., Mariani Thomas J., Folz Rodney J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002 Aug 1;33(3):337–349. doi: 10.1016/s0891-5849(02)00905-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES