Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 15;369(Pt 2):199–211. doi: 10.1042/BJ20021528

Ceramide: second messenger or modulator of membrane structure and dynamics?

Wim J van Blitterswijk 1, Arnold H van der Luit 1, Robert Jan Veldman 1, Marcel Verheij 1, Jannie Borst 1
PMCID: PMC1223095  PMID: 12408751

Abstract

The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology.

Full Text

The Full Text of this article is available as a PDF (284.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abousalham Abdelkarim, Hobman Tom C., Dewald Jay, Garbutt Michael, Brindley David N. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor. Biochem J. 2002 Feb 1;361(Pt 3):653–661. doi: 10.1042/0264-6021:3610653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adam-Klages S., Adam D., Wiegmann K., Struve S., Kolanus W., Schneider-Mergener J., Krönke M. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell. 1996 Sep 20;86(6):937–947. doi: 10.1016/s0092-8674(00)80169-5. [DOI] [PubMed] [Google Scholar]
  3. Adam Dieter, Heinrich Michael, Kabelitz Dieter, Schütze Stefan. Ceramide: does it matter for T cells? Trends Immunol. 2002 Jan;23(1):1–4. doi: 10.1016/s1471-4906(01)02091-9. [DOI] [PubMed] [Google Scholar]
  4. Algeciras-Schimnich Alicia, Shen Le, Barnhart Bryan C., Murmann Andrea E., Burkhardt Janis K., Peter Marcus E. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol. 2002 Jan;22(1):207–220. doi: 10.1128/MCB.22.1.207-220.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allan D. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem J. 2000 Feb 1;345(Pt 3):603–610. [PMC free article] [PubMed] [Google Scholar]
  6. Andrieu-Abadie N., Carpentier S., Salvayre R., Levade T. The tumour necrosis factor-sensitive pool of sphingomyelin is resynthesized in a distinct compartment of the plasma membrane. Biochem J. 1998 Jul 1;333(Pt 1):91–97. doi: 10.1042/bj3330091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Andrieu N., Salvayre R., Levade T. Comparative study of the metabolic pools of sphingomyelin and phosphatidylcholine sensitive to tumor necrosis factor. Eur J Biochem. 1996 Mar 1;236(2):738–745. doi: 10.1111/j.1432-1033.1996.00738.x. [DOI] [PubMed] [Google Scholar]
  8. Ardail D., Popa I., Alcantara K., Pons A., Zanetta J. P., Louisot P., Thomas L., Portoukalian J. Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria. FEBS Lett. 2001 Jan 19;488(3):160–164. doi: 10.1016/s0014-5793(00)02332-2. [DOI] [PubMed] [Google Scholar]
  9. Ayllón Verónica, Fleischer Aarne, Cayla Xavier, García Alphonse, Rebollo Angelita. Segregation of Bad from lipid rafts is implicated in the induction of apoptosis. J Immunol. 2002 Apr 1;168(7):3387–3393. doi: 10.4049/jimmunol.168.7.3387. [DOI] [PubMed] [Google Scholar]
  10. Bai J., Pagano R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry. 1997 Jul 22;36(29):8840–8848. doi: 10.1021/bi970145r. [DOI] [PubMed] [Google Scholar]
  11. Balendran A., Biondi R. M., Cheung P. C., Casamayor A., Deak M., Alessi D. R. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1. J Biol Chem. 2000 Jul 7;275(27):20806–20813. doi: 10.1074/jbc.M000421200. [DOI] [PubMed] [Google Scholar]
  12. Bankaitis Vytas A. Cell biology. Slick recruitment to the Golgi. Science. 2002 Jan 11;295(5553):290–291. doi: 10.1126/science.1068446. [DOI] [PubMed] [Google Scholar]
  13. Baron Carole L., Malhotra Vivek. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science. 2001 Nov 29;295(5553):325–328. doi: 10.1126/science.1066759. [DOI] [PubMed] [Google Scholar]
  14. Basañez G., Nechushtan A., Drozhinin O., Chanturiya A., Choe E., Tutt S., Wood K. A., Hsu Y., Zimmerberg J., Youle R. J. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5492–5497. doi: 10.1073/pnas.96.10.5492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Basu S., Bayoumy S., Zhang Y., Lozano J., Kolesnick R. BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem. 1998 Nov 13;273(46):30419–30426. doi: 10.1074/jbc.273.46.30419. [DOI] [PubMed] [Google Scholar]
  16. Basáez G., Ruiz-Argüello M. B., Alonso A., Goñi F. M., Karlsson G., Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J. 1997 Jun;72(6):2630–2637. doi: 10.1016/S0006-3495(97)78906-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Berra E., Diaz-Meco M. T., Dominguez I., Municio M. M., Sanz L., Lozano J., Chapkin R. S., Moscat J. Protein kinase C zeta isoform is critical for mitogenic signal transduction. Cell. 1993 Aug 13;74(3):555–563. doi: 10.1016/0092-8674(93)80056-k. [DOI] [PubMed] [Google Scholar]
  18. Bezombes C., Ségui B., Cuvillier O., Bruno A. P., Uro-Coste E., Gouazé V., Andrieu-Abadie N., Carpentier S., Laurent G., Salvayre R. Lysosomal sphingomyelinase is not solicited for apoptosis signaling. FASEB J. 2000 Dec 8;15(2):297–299. doi: 10.1096/fj.00-0466fje. [DOI] [PubMed] [Google Scholar]
  19. Birbes H., El Bawab S., Hannun Y. A., Obeid L. M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001 Dec;15(14):2669–2679. doi: 10.1096/fj.01-0539com. [DOI] [PubMed] [Google Scholar]
  20. Bladergroen B. A., Bussière M., Klein W., Geelen M. J., Van Golde L. M., Houweling M. Inhibition of phosphatidylcholine and phosphatidylethanolamine biosynthesis in rat-2 fibroblasts by cell-permeable ceramides. Eur J Biochem. 1999 Aug;264(1):152–160. doi: 10.1046/j.1432-1327.1999.00589.x. [DOI] [PubMed] [Google Scholar]
  21. Bose R., Verheij M., Haimovitz-Friedman A., Scotto K., Fuks Z., Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995 Aug 11;82(3):405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  22. Bourbon N. A., Yun J., Kester M. Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem. 2000 Nov 10;275(45):35617–35623. doi: 10.1074/jbc.M007346200. [DOI] [PubMed] [Google Scholar]
  23. Bourbon Nicole A., Sandirasegarane Lakshman, Kester Mark. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem. 2001 Nov 26;277(5):3286–3292. doi: 10.1074/jbc.M110541200. [DOI] [PubMed] [Google Scholar]
  24. Brann Adi B., Tcherpakov Marianna, Williams Ian M., Futerman Anthony H., Fainzilber Mike. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem. 2002 Jan 3;277(12):9812–9818. doi: 10.1074/jbc.M109862200. [DOI] [PubMed] [Google Scholar]
  25. Burek C., Roth J., Koch H. G., Harzer K., Los M., Schulze-Osthoff K. The role of ceramide in receptor- and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene. 2001 Oct 4;20(45):6493–6502. doi: 10.1038/sj.onc.1204841. [DOI] [PubMed] [Google Scholar]
  26. Calcerrada M. C., Miguel B. G., Martín L., Catalán R. E., Martínez A. M. Involvement of phosphatidylinositol 3-kinase in nuclear translocation of protein kinase C zeta induced by C2-ceramide in rat hepatocytes. FEBS Lett. 2002 Mar 13;514(2-3):361–365. doi: 10.1016/s0014-5793(02)02401-8. [DOI] [PubMed] [Google Scholar]
  27. Calcerrada M. C., Miguel B. G., Martín L., Catalán R. E., Martínez A. M. Involvement of phosphatidylinositol 3-kinase in nuclear translocation of protein kinase C zeta induced by C2-ceramide in rat hepatocytes. FEBS Lett. 2002 Mar 13;514(2-3):361–365. doi: 10.1016/s0014-5793(02)02401-8. [DOI] [PubMed] [Google Scholar]
  28. Cazzolli R., Carpenter L., Biden T. J., Schmitz-Peiffer C. A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes. 2001 Oct;50(10):2210–2218. doi: 10.2337/diabetes.50.10.2210. [DOI] [PubMed] [Google Scholar]
  29. Chalfant C. E., Kishikawa K., Mumby M. C., Kamibayashi C., Bielawska A., Hannun Y. A. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999 Jul 16;274(29):20313–20317. doi: 10.1074/jbc.274.29.20313. [DOI] [PubMed] [Google Scholar]
  30. Chalfant C. E., Ogretmen B., Galadari S., Kroesen B. J., Pettus B. J., Hannun Y. A. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem. 2001 Aug 13;276(48):44848–44855. doi: 10.1074/jbc.M106291200. [DOI] [PubMed] [Google Scholar]
  31. Charles R., Sandirasegarane L., Yun J., Bourbon N., Wilson R., Rothstein R. P., Levison S. W., Kester M. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res. 2000 Aug 18;87(4):282–288. doi: 10.1161/01.res.87.4.282. [DOI] [PubMed] [Google Scholar]
  32. Chatelut M., Leruth M., Harzer K., Dagan A., Marchesini S., Gatt S., Salvayre R., Courtoy P., Levade T. Natural ceramide is unable to escape the lysosome, in contrast to a fluorescent analogue. FEBS Lett. 1998 Apr 10;426(1):102–106. doi: 10.1016/s0014-5793(98)00325-1. [DOI] [PubMed] [Google Scholar]
  33. Chatterjee M., Wu S. Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem. 2001 Mar;219(1-2):21–27. doi: 10.1023/a:1011083818452. [DOI] [PubMed] [Google Scholar]
  34. Chatterjee S., Han H., Rollins S., Cleveland T. Molecular cloning, characterization, and expression of a novel human neutral sphingomyelinase. J Biol Chem. 1999 Dec 24;274(52):37407–37412. doi: 10.1074/jbc.274.52.37407. [DOI] [PubMed] [Google Scholar]
  35. Chou M. M., Hou W., Johnson J., Graham L. K., Lee M. H., Chen C. S., Newton A. C., Schaffhausen B. S., Toker A. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol. 1998 Sep 24;8(19):1069–1077. doi: 10.1016/s0960-9822(98)70444-0. [DOI] [PubMed] [Google Scholar]
  36. Cock J. G., Tepper A. D., de Vries E., van Blitterswijk W. J., Borst J. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J Biol Chem. 1998 Mar 27;273(13):7560–7565. doi: 10.1074/jbc.273.13.7560. [DOI] [PubMed] [Google Scholar]
  37. Colell Anna, Morales Albert, Fernández-Checa José C., García-Ruiz Carmen. Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-alpha-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. Possible role of ganglioside GD3. FEBS Lett. 2002 Aug 28;526(1-3):135–141. doi: 10.1016/s0014-5793(02)03140-x. [DOI] [PubMed] [Google Scholar]
  38. Cremesti A., Paris F., Grassmé H., Holler N., Tschopp J., Fuks Z., Gulbins E., Kolesnick R. Ceramide enables fas to cap and kill. J Biol Chem. 2001 Apr 3;276(26):23954–23961. doi: 10.1074/jbc.M101866200. [DOI] [PubMed] [Google Scholar]
  39. Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
  40. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M. E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997 Oct 17;91(2):231–241. doi: 10.1016/s0092-8674(00)80405-5. [DOI] [PubMed] [Google Scholar]
  41. Daum G., Vance J. E. Import of lipids into mitochondria. Prog Lipid Res. 1997 Sep;36(2-3):103–130. doi: 10.1016/s0163-7827(97)00006-4. [DOI] [PubMed] [Google Scholar]
  42. De Maria R., Lenti L., Malisan F., d'Agostino F., Tomassini B., Zeuner A., Rippo M. R., Testi R. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science. 1997 Sep 12;277(5332):1652–1655. doi: 10.1126/science.277.5332.1652. [DOI] [PubMed] [Google Scholar]
  43. De Maria R., Rippo M. R., Schuchman E. H., Testi R. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med. 1998 Mar 16;187(6):897–902. doi: 10.1084/jem.187.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Deng Jiong, Zhang Haifan, Kloosterboer Freke, Liao Yong, Klostergaard Jim, Levitt Mark L., Hung Mien-Chie. Ceramide does not act as a general second messenger for ultraviolet-induced apoptosis. Oncogene. 2002 Jan 3;21(1):44–52. doi: 10.1038/sj.onc.1204900. [DOI] [PubMed] [Google Scholar]
  45. Desagher S., Martinou J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000 Sep;10(9):369–377. doi: 10.1016/s0962-8924(00)01803-1. [DOI] [PubMed] [Google Scholar]
  46. Di Bartolomeo S., Spinedi A. Potentiation of okadaic acid-induced ceramide elevation but not apoptosis by inhibition of glucosylceramide synthase in human neuroepithelioma cells. Biochem Pharmacol. 2001 Apr 1;61(7):851–856. doi: 10.1016/s0006-2952(01)00569-x. [DOI] [PubMed] [Google Scholar]
  47. Di Paola M., Cocco T., Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000 Jun 6;39(22):6660–6668. doi: 10.1021/bi9924415. [DOI] [PubMed] [Google Scholar]
  48. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  49. Dobrowsky R. T. Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal. 2000 Feb;12(2):81–90. doi: 10.1016/s0898-6568(99)00072-8. [DOI] [PubMed] [Google Scholar]
  50. Dobrowsky R. T., Werner M. H., Castellino A. M., Chao M. V., Hannun Y. A. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science. 1994 Sep 9;265(5178):1596–1599. doi: 10.1126/science.8079174. [DOI] [PubMed] [Google Scholar]
  51. Doornbos R. P., Theelen M., van der Hoeven P. C., van Blitterswijk W. J., Verkleij A. J., van Bergen en Henegouwen P. M. Protein kinase Czeta is a negative regulator of protein kinase B activity. J Biol Chem. 1999 Mar 26;274(13):8589–8596. doi: 10.1074/jbc.274.13.8589. [DOI] [PubMed] [Google Scholar]
  52. El Bawab S., Birbes H., Roddy P., Szulc Z. M., Bielawska A., Hannun Y. A. Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J Biol Chem. 2001 Feb 8;276(20):16758–16766. doi: 10.1074/jbc.M009331200. [DOI] [PubMed] [Google Scholar]
  53. El Bawab S., Roddy P., Qian T., Bielawska A., Lemasters J. J., Hannun Y. A. Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem. 2000 Jul 14;275(28):21508–21513. doi: 10.1074/jbc.M002522200. [DOI] [PubMed] [Google Scholar]
  54. Epand Raquel F., Martinou Jean-Claude, Fornallaz-Mulhauser Monique, Hughes Donald W., Epand Richard M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem. 2002 Jun 24;277(36):32632–32639. doi: 10.1074/jbc.M202396200. [DOI] [PubMed] [Google Scholar]
  55. Galve-Roperh I., Haro A., Díaz-Laviada I. Ceramide-induced translocation of protein kinase C zeta in primary cultures of astrocytes. FEBS Lett. 1997 Oct 6;415(3):271–274. doi: 10.1016/s0014-5793(97)00985-x. [DOI] [PubMed] [Google Scholar]
  56. García-Ruiz C., Colell A., Marí M., Morales A., Fernández-Checa J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997 Apr 25;272(17):11369–11377. doi: 10.1074/jbc.272.17.11369. [DOI] [PubMed] [Google Scholar]
  57. García-Ruiz C., Colell A., París R., Fernández-Checa J. C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J. 2000 May;14(7):847–858. doi: 10.1096/fasebj.14.7.847. [DOI] [PubMed] [Google Scholar]
  58. García-Ruiz Carmen, Colell Anna, Morales Albert, Calvo María, Enrich Carlos, Fernández-Checa José C. Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha. J Biol Chem. 2002 Jul 12;277(39):36443–36448. doi: 10.1074/jbc.M206021200. [DOI] [PubMed] [Google Scholar]
  59. Ghafourifar P., Klein S. D., Schucht O., Schenk U., Pruschy M., Rocha S., Richter C. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem. 1999 Mar 5;274(10):6080–6084. doi: 10.1074/jbc.274.10.6080. [DOI] [PubMed] [Google Scholar]
  60. Giammarioli A. M., Garofalo T., Sorice M., Misasi R., Gambardella L., Gradini R., Fais S., Pavan A., Malorni W. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett. 2001 Sep 28;506(1):45–50. doi: 10.1016/s0014-5793(01)02776-4. [DOI] [PubMed] [Google Scholar]
  61. Gillard B. K., Clement R. G., Marcus D. M. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology. 1998 Sep;8(9):885–890. doi: 10.1093/glycob/8.9.885. [DOI] [PubMed] [Google Scholar]
  62. Goñi F. M., Alonso A. Structure and functional properties of diacylglycerols in membranes. Prog Lipid Res. 1999 Jan;38(1):1–48. doi: 10.1016/s0163-7827(98)00021-6. [DOI] [PubMed] [Google Scholar]
  63. Grassme H., Jekle A., Riehle A., Schwarz H., Berger J., Sandhoff K., Kolesnick R., Gulbins E. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001 Mar 12;276(23):20589–20596. doi: 10.1074/jbc.M101207200. [DOI] [PubMed] [Google Scholar]
  64. Grassmé H., Gulbins E., Brenner B., Ferlinz K., Sandhoff K., Harzer K., Lang F., Meyer T. F. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997 Nov 28;91(5):605–615. doi: 10.1016/s0092-8674(00)80448-1. [DOI] [PubMed] [Google Scholar]
  65. Grassmé Heike, Jendrossek Verena, Bock Jürgen, Riehle Andrea, Gulbins Erich. Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol. 2002 Jan 1;168(1):298–307. doi: 10.4049/jimmunol.168.1.298. [DOI] [PubMed] [Google Scholar]
  66. Hanna A. N., Berthiaume L. G., Kikuchi Y., Begg D., Bourgoin S., Brindley D. N. Tumor necrosis factor-alpha induces stress fiber formation through ceramide production: role of sphingosine kinase. Mol Biol Cell. 2001 Nov;12(11):3618–3630. doi: 10.1091/mbc.12.11.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  68. Hannun Y. A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000 Feb;10(2):73–80. doi: 10.1016/s0962-8924(99)01694-3. [DOI] [PubMed] [Google Scholar]
  69. Hao M., Maxfield F. R. Characterization of rapid membrane internalization and recycling. J Biol Chem. 2000 May 19;275(20):15279–15286. doi: 10.1074/jbc.275.20.15279. [DOI] [PubMed] [Google Scholar]
  70. Heinrich M., Wickel M., Schneider-Brachert W., Sandberg C., Gahr J., Schwandner R., Weber T., Saftig P., Peters C., Brunner J. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999 Oct 1;18(19):5252–5263. doi: 10.1093/emboj/18.19.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Henneberry A. L., Lagace T. A., Ridgway N. D., McMaster C. R. Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for SEC14p-dependent Golgi function and cell growth. Mol Biol Cell. 2001 Mar;12(3):511–520. doi: 10.1091/mbc.12.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Hetz Claudio A., Hunn Martin, Rojas Patricio, Torres Vicente, Leyton Lisette, Quest Andrew F. G. Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci. 2002 Dec 1;115(Pt 23):4671–4683. doi: 10.1242/jcs.00153. [DOI] [PubMed] [Google Scholar]
  73. Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
  74. Hofmann K., Tomiuk S., Wolff G., Stoffel W. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5895–5900. doi: 10.1073/pnas.97.11.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Holopainen J. M., Angelova M. I., Kinnunen P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
  77. Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
  78. Homaidan Fadia R., El-Sabban Marwan E., Chakroun Iman, El-Sibai Mirvat, Dbaibo Ghassan S. IL-1 stimulates ceramide accumulation without inducing apoptosis in intestinal epithelial cells. Mediators Inflamm. 2002 Feb;11(1):39–45. doi: 10.1080/09629350210313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hommel U., Zurini M., Luyten M. Solution structure of a cysteine rich domain of rat protein kinase C. Nat Struct Biol. 1994 Jun;1(6):383–387. doi: 10.1038/nsb0694-383. [DOI] [PubMed] [Google Scholar]
  80. Hueber Anne-Odile, Bernard Anne-Marie, Herincs Zoltan, Couzinet Arnaud, He Hai-Tao. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 2002 Jan 29;3(2):190–196. doi: 10.1093/embo-reports/kvf022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Huwiler A., Brunner J., Hummel R., Vervoordeldonk M., Stabel S., van den Bosch H., Pfeilschifter J. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6959–6963. doi: 10.1073/pnas.93.14.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Huwiler A., Kolter T., Pfeilschifter J., Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta. 2000 May 31;1485(2-3):63–99. doi: 10.1016/s1388-1981(00)00042-1. [DOI] [PubMed] [Google Scholar]
  83. Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 2001 Aug;13(4):470–477. doi: 10.1016/s0955-0674(00)00238-6. [DOI] [PubMed] [Google Scholar]
  84. Jaffrézou J. P., Maestre N., de Mas-Mansat V., Bezombes C., Levade T., Laurent G. Positive feedback control of neutral sphingomyelinase activity by ceramide. FASEB J. 1998 Aug;12(11):999–1006. doi: 10.1096/fasebj.12.11.999. [DOI] [PubMed] [Google Scholar]
  85. Jayadev S., Hayter H. L., Andrieu N., Gamard C. J., Liu B., Balu R., Hayakawa M., Ito F., Hannun Y. A. Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells. J Biol Chem. 1997 Jul 4;272(27):17196–17203. doi: 10.1074/jbc.272.27.17196. [DOI] [PubMed] [Google Scholar]
  86. Karasavvas N., Zakeri Z. Relationships of apoptotic signaling mediated by ceramide and TNF-alpha in U937 cells. Cell Death Differ. 1999 Feb;6(2):115–123. doi: 10.1038/sj.cdd.4400482. [DOI] [PubMed] [Google Scholar]
  87. Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature. 1997 May 1;387(6628):101–105. doi: 10.1038/387101a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Kolesnick R. N., Goñi F. M., Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000 Sep;184(3):285–300. doi: 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  89. Kolesnick R., Hannun Y. A. Ceramide and apoptosis. Trends Biochem Sci. 1999 Jun;24(6):224–227. doi: 10.1016/s0968-0004(99)01408-5. [DOI] [PubMed] [Google Scholar]
  90. Le Stunff Hervé, Galve-Roperh Ismael, Peterson Courtney, Milstien Sheldon, Spiegel Sarah. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol. 2002 Sep 16;158(6):1039–1049. doi: 10.1083/jcb.200203123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Levade T., Jaffrézou J. P. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta. 1999 Apr 19;1438(1):1–17. doi: 10.1016/s1388-1981(99)00038-4. [DOI] [PubMed] [Google Scholar]
  92. Leverrier Y., Ridley A. J. Apoptosis: caspases orchestrate the ROCK 'n' bleb. Nat Cell Biol. 2001 Apr;3(4):E91–E93. doi: 10.1038/35070151. [DOI] [PubMed] [Google Scholar]
  93. Li R., Blanchette-Mackie E. J., Ladisch S. Induction of endocytic vesicles by exogenous C(6)-ceramide. J Biol Chem. 1999 Jul 23;274(30):21121–21127. doi: 10.1074/jbc.274.30.21121. [DOI] [PubMed] [Google Scholar]
  94. Liljedahl M., Maeda Y., Colanzi A., Ayala I., Van Lint J., Malhotra V. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell. 2001 Feb 9;104(3):409–420. doi: 10.1016/s0092-8674(01)00228-8. [DOI] [PubMed] [Google Scholar]
  95. Limatola C., Barabino B., Nista A., Santoni A. Interleukin 1-beta-induced protein kinase C-zeta activation is mimicked by exogenous phospholipase D. Biochem J. 1997 Jan 15;321(Pt 2):497–501. doi: 10.1042/bj3210497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Lin T., Genestier L., Pinkoski M. J., Castro A., Nicholas S., Mogil R., Paris F., Fuks Z., Schuchman E. H., Kolesnick R. N. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem. 2000 Mar 24;275(12):8657–8663. doi: 10.1074/jbc.275.12.8657. [DOI] [PubMed] [Google Scholar]
  97. Linardic C. M., Hannun Y. A. Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. J Biol Chem. 1994 Sep 23;269(38):23530–23537. [PubMed] [Google Scholar]
  98. Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L. M., Hannun Y. A. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998 May 1;273(18):11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
  99. Liu Y. Y., Han T. Y., Giuliano A. E., Cabot M. C. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem. 1999 Jan 8;274(2):1140–1146. doi: 10.1074/jbc.274.2.1140. [DOI] [PubMed] [Google Scholar]
  100. Liu Y. Y., Han T. Y., Giuliano A. E., Ichikawa S., Hirabayashi Y., Cabot M. C. Glycosylation of ceramide potentiates cellular resistance to tumor necrosis factor-alpha-induced apoptosis. Exp Cell Res. 1999 Nov 1;252(2):464–470. doi: 10.1006/excr.1999.4649. [DOI] [PubMed] [Google Scholar]
  101. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
  102. Lozano J., Menendez S., Morales A., Ehleiter D., Liao W. C., Wagman R., Haimovitz-Friedman A., Fuks Z., Kolesnick R. Cell autonomous apoptosis defects in acid sphingomyelinase knockout fibroblasts. J Biol Chem. 2001 Jan 5;276(1):442–448. doi: 10.1074/jbc.M006353200. [DOI] [PubMed] [Google Scholar]
  103. Luberto C., Hannun Y. A. Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? J Biol Chem. 1998 Jun 5;273(23):14550–14559. doi: 10.1074/jbc.273.23.14550. [DOI] [PubMed] [Google Scholar]
  104. Luberto C., Yoo D. S., Suidan H. S., Bartoli G. M., Hannun Y. A. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem. 2000 May 12;275(19):14760–14766. doi: 10.1074/jbc.275.19.14760. [DOI] [PubMed] [Google Scholar]
  105. Lucci A., Han T. Y., Liu Y. Y., Giuliano A. E., Cabot M. C. Multidrug resistance modulators and doxorubicin synergize to elevate ceramide levels and elicit apoptosis in drug-resistant cancer cells. Cancer. 1999 Jul 15;86(2):300–311. doi: 10.1002/(sici)1097-0142(19990715)86:2<300::aid-cncr14>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  106. Lutter M., Fang M., Luo X., Nishijima M., Xie X., Wang X. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol. 2000 Oct;2(10):754–761. doi: 10.1038/35036395. [DOI] [PubMed] [Google Scholar]
  107. Marash M., Gerst J. E. t-SNARE dephosphorylation promotes SNARE assembly and exocytosis in yeast. EMBO J. 2001 Feb 1;20(3):411–421. doi: 10.1093/emboj/20.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Marsh B. J., Mastronarde D. N., Buttle K. F., Howell K. E., McIntosh J. R. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2399–2406. doi: 10.1073/pnas.051631998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Massey J. B. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim Biophys Acta. 2001 Feb 9;1510(1-2):167–184. doi: 10.1016/s0005-2736(00)00344-8. [DOI] [PubMed] [Google Scholar]
  110. Matsko C. M., Hunter O. C., Rabinowich H., Lotze M. T., Amoscato A. A. Mitochondrial lipid alterations during Fas- and radiation-induced apoptosis. Biochem Biophys Res Commun. 2001 Oct 12;287(5):1112–1120. doi: 10.1006/bbrc.2001.5696. [DOI] [PubMed] [Google Scholar]
  111. McMaster C. R. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem Cell Biol. 2001;79(6):681–692. doi: 10.1139/o01-139. [DOI] [PubMed] [Google Scholar]
  112. Melchiorri D., Martini F., Lococo E., Gradini R., Barletta E., De Maria R., Caricasole A., Nicoletti F., Lenti L. An early increase in the disialoganglioside GD3 contributes to the development of neuronal apoptosis in culture. Cell Death Differ. 2002 Jun;9(6):609–615. doi: 10.1038/sj.cdd.4401020. [DOI] [PubMed] [Google Scholar]
  113. Mochizuki Toshihiro, Asai Akio, Saito Nobuhito, Tanaka Sakae, Katagiri Hideki, Asano Tomoichiro, Nakane Makoto, Tamura Akira, Kuchino Yoshiyuki, Kitanaka Chifumi. Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J Biol Chem. 2001 Nov 12;277(4):2790–2797. doi: 10.1074/jbc.M106361200. [DOI] [PubMed] [Google Scholar]
  114. Monick M. M., Carter A. B., Flaherty D. M., Peterson M. W., Hunninghake G. W. Protein kinase C zeta plays a central role in activation of the p42/44 mitogen-activated protein kinase by endotoxin in alveolar macrophages. J Immunol. 2000 Oct 15;165(8):4632–4639. doi: 10.4049/jimmunol.165.8.4632. [DOI] [PubMed] [Google Scholar]
  115. Monick M. M., Carter A. B., Gudmundsson G., Mallampalli R., Powers L. S., Hunninghake G. W. A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol. 1999 Mar 1;162(5):3005–3012. [PubMed] [Google Scholar]
  116. Monick M. M., Mallampalli R. K., Carter A. B., Flaherty D. M., McCoy D., Robeff P. K., Peterson M. W., Hunninghake G. W. Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol. 2001 Nov 15;167(10):5977–5985. doi: 10.4049/jimmunol.167.10.5977. [DOI] [PubMed] [Google Scholar]
  117. Montes L. Ruth, Ruiz-Argüello M. Begoña, Goñi Félix M., Alonso Alicia. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem. 2002 Jan 16;277(14):11788–11794. doi: 10.1074/jbc.M111568200. [DOI] [PubMed] [Google Scholar]
  118. Müller G., Ayoub M., Storz P., Rennecke J., Fabbro D., Pfizenmaier K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 1995 May 1;14(9):1961–1969. doi: 10.1002/j.1460-2075.1995.tb07188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Müller G., Storz P., Bourteele S., Döppler H., Pfizenmaier K., Mischak H., Philipp A., Kaiser C., Kolch W. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 1998 Feb 2;17(3):732–742. doi: 10.1093/emboj/17.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Nichols B. J., Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol. 2001 Oct;11(10):406–412. doi: 10.1016/s0962-8924(01)02107-9. [DOI] [PubMed] [Google Scholar]
  121. Nix M., Stoffel W. Perturbation of membrane microdomains reduces mitogenic signaling and increases susceptibility to apoptosis after T cell receptor stimulation. Cell Death Differ. 2000 May;7(5):413–424. doi: 10.1038/sj.cdd.4400666. [DOI] [PubMed] [Google Scholar]
  122. Ogretmen Besim, Pettus Benjamin J., Rossi Michael J., Wood Rachel, Usta Julnar, Szulc Zdzislaw, Bielawska Alicia, Obeid Lina M., Hannun Yusuf A. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem. 2002 Jan 28;277(15):12960–12969. doi: 10.1074/jbc.M110699200. [DOI] [PubMed] [Google Scholar]
  123. Okamoto Yasuo, Obeid Lina M., Hannun Yusuf A. Bcl-xL interrupts oxidative activation of neutral sphingomyelinase. FEBS Lett. 2002 Oct 23;530(1-3):104–108. doi: 10.1016/s0014-5793(02)03435-x. [DOI] [PubMed] [Google Scholar]
  124. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  125. Olivera A., Romanowski A., Rani C. S., Spiegel S. Differential effects of sphingomyelinase and cell-permeable ceramide analogs on proliferation of Swiss 3T3 fibroblasts. Biochim Biophys Acta. 1997 Oct 18;1348(3):311–323. doi: 10.1016/s0005-2760(97)00067-2. [DOI] [PubMed] [Google Scholar]
  126. Paris F., Grassmé H., Cremesti A., Zager J., Fong Y., Haimovitz-Friedman A., Fuks Z., Gulbins E., Kolesnick R. Natural ceramide reverses Fas resistance of acid sphingomyelinase(-/-) hepatocytes. J Biol Chem. 2000 Nov 28;276(11):8297–8305. doi: 10.1074/jbc.M008732200. [DOI] [PubMed] [Google Scholar]
  127. Perry D. K. The role of de novo ceramide synthesis in chemotherapy-induced apoptosis. Ann N Y Acad Sci. 2000 Apr;905:91–96. doi: 10.1111/j.1749-6632.2000.tb06541.x. [DOI] [PubMed] [Google Scholar]
  128. Prinz W. A., Grzyb L., Veenhuis M., Kahana J. A., Silver P. A., Rapoport T. A. Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol. 2000 Aug 7;150(3):461–474. doi: 10.1083/jcb.150.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Puri V., Watanabe R., Singh R. D., Dominguez M., Brown J. C., Wheatley C. L., Marks D. L., Pagano R. E. Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol. 2001 Jul 30;154(3):535–547. doi: 10.1083/jcb.200102084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Ramos B., Salido G. M., Campo M. L., Claro E. Inhibition of phosphatidylcholine synthesis precedes apoptosis induced by C2-ceramide: protection by exogenous phosphatidylcholine. Neuroreport. 2000 Sep 28;11(14):3103–3108. doi: 10.1097/00001756-200009280-00013. [DOI] [PubMed] [Google Scholar]
  132. Ramos Belén, El Mouedden Mohammed, Claro Enrique, Jackowski Suzanne. Inhibition of CTP:phosphocholine cytidylyltransferase by C(2)-ceramide and its relationship to apoptosis. Mol Pharmacol. 2002 Nov;62(5):1068–1075. doi: 10.1124/mol.62.5.1068. [DOI] [PubMed] [Google Scholar]
  133. Rippo M. R., Malisan F., Ravagnan L., Tomassini B., Condo I., Costantini P., Susin S. A., Rufini A., Todaro M., Kroemer G. GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J. 2000 Oct;14(13):2047–2054. doi: 10.1096/fj.99-1028com. [DOI] [PubMed] [Google Scholar]
  134. Roth M. G. Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 1999 May;9(5):174–179. doi: 10.1016/s0962-8924(99)01535-4. [DOI] [PubMed] [Google Scholar]
  135. Ruiz-Argüello M. B., Basáez G., Goñi F. M., Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996 Oct 25;271(43):26616–26621. doi: 10.1074/jbc.271.43.26616. [DOI] [PubMed] [Google Scholar]
  136. Ruvolo Peter P., Clark Warren, Mumby Marc, Gao Fengqin, May W. Stratford. A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem. 2002 Apr 2;277(25):22847–22852. doi: 10.1074/jbc.M201830200. [DOI] [PubMed] [Google Scholar]
  137. Sadeghlar F., Sandhoff K., van Echten-Deckert G. Cell type specific localization of sphingomyelin biosynthesis. FEBS Lett. 2000 Jul 28;478(1-2):9–12. doi: 10.1016/s0014-5793(00)01818-4. [DOI] [PubMed] [Google Scholar]
  138. Salinas M., López-Valdaliso R., Martín D., Alvarez A., Cuadrado A. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci. 2000 Feb;15(2):156–169. doi: 10.1006/mcne.1999.0813. [DOI] [PubMed] [Google Scholar]
  139. Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992 Nov 27;71(5):765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  140. Sillence D. J., Allan D. Utilization of phosphatidylcholine and production of diradylglycerol as a consequence of sphingomyelin synthesis. Biochem J. 1998 Apr 1;331(Pt 1):251–256. doi: 10.1042/bj3310251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Simon C. G., Jr, Gear A. R. Membrane-destabilizing properties of C2-ceramide may be responsible for its ability to inhibit platelet aggregation. Biochemistry. 1998 Feb 17;37(7):2059–2069. doi: 10.1021/bi9710636. [DOI] [PubMed] [Google Scholar]
  142. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  143. Siskind L. J., Colombini M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem. 2000 Dec 8;275(49):38640–38644. doi: 10.1074/jbc.C000587200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Siskind Leah J., Kolesnick Richard N., Colombini Marco. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002 May 10;277(30):26796–26803. doi: 10.1074/jbc.M200754200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Spiegel S., Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000 Jun 30;476(1-2):55–57. doi: 10.1016/s0014-5793(00)01670-7. [DOI] [PubMed] [Google Scholar]
  146. Stoffel W. Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo. Chem Phys Lipids. 1999 Nov;102(1-2):107–121. doi: 10.1016/s0009-3084(99)00079-1. [DOI] [PubMed] [Google Scholar]
  147. Stratford S., DeWald D. B., Summers S. A. Ceramide dissociates 3'-phosphoinositide production from pleckstrin homology domain translocation. Biochem J. 2001 Mar 1;354(Pt 2):359–368. doi: 10.1042/0264-6021:3540359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Strelow A., Bernardo K., Adam-Klages S., Linke T., Sandhoff K., Krönke M., Adam D. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med. 2000 Sep 4;192(5):601–612. doi: 10.1084/jem.192.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Sumitomo Makoto, Ohba Motoi, Asakuma Junichi, Asano Takako, Kuroki Toshio, Asano Tomohiko, Hayakawa Masamichi. Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest. 2002 Mar;109(6):827–836. doi: 10.1172/JCI14146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Ségui B., Andrieu-Abadie N., Adam-Klages S., Meilhac O., Kreder D., Garcia V., Bruno A. P., Jaffrézou J. P., Salvayre R., Krönke M. CD40 signals apoptosis through FAN-regulated activation of the sphingomyelin-ceramide pathway. J Biol Chem. 1999 Dec 24;274(52):37251–37258. doi: 10.1074/jbc.274.52.37251. [DOI] [PubMed] [Google Scholar]
  151. Tepper A. D., Cock J. G., de Vries E., Borst J., van Blitterswijk W. J. CD95/Fas-induced ceramide formation proceeds with slow kinetics and is not blocked by caspase-3/CPP32 inhibition. J Biol Chem. 1997 Sep 26;272(39):24308–24312. doi: 10.1074/jbc.272.39.24308. [DOI] [PubMed] [Google Scholar]
  152. Tepper A. D., Diks S. H., van Blitterswijk W. J., Borst J. Glucosylceramide synthase does not attenuate the ceramide pool accumulating during apoptosis induced by CD95 or anti-cancer regimens. J Biol Chem. 2000 Nov 3;275(44):34810–34817. doi: 10.1074/jbc.M005142200. [DOI] [PubMed] [Google Scholar]
  153. Tepper A. D., Ruurs P., Borst J., van Blitterswijk W. J. Effect of overexpression of a neutral sphingomyelinase on CD95-induced ceramide production and apoptosis. Biochem Biophys Res Commun. 2001 Jan 26;280(3):634–639. doi: 10.1006/bbrc.2000.4166. [DOI] [PubMed] [Google Scholar]
  154. Tepper A. D., Ruurs P., Wiedmer T., Sims P. J., Borst J., van Blitterswijk W. J. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J Cell Biol. 2000 Jul 10;150(1):155–164. doi: 10.1083/jcb.150.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Tepper A. D., de Vries E., van Blitterswijk W. J., Borst J. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest. 1999 Apr;103(7):971–978. doi: 10.1172/JCI5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Tomassini Barbara, Testi Roberto. Mitochondria as sensors of sphingolipids. Biochimie. 2002 Feb-Mar;84(2-3):123–129. doi: 10.1016/s0300-9084(02)01377-9. [DOI] [PubMed] [Google Scholar]
  157. Tomiuk S., Hofmann K., Nix M., Zumbansen M., Stoffel W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3638–3643. doi: 10.1073/pnas.95.7.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Veldman R. J., Maestre N., Aduib O. M., Medin J. A., Salvayre R., Levade T. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J. 2001 May 1;355(Pt 3):859–868. doi: 10.1042/bj3550859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Venable M. E., Lee J. Y., Smyth M. J., Bielawska A., Obeid L. M. Role of ceramide in cellular senescence. J Biol Chem. 1995 Dec 22;270(51):30701–30708. doi: 10.1074/jbc.270.51.30701. [DOI] [PubMed] [Google Scholar]
  161. Venkataraman K., Futerman A. H. Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol. 2000 Oct;10(10):408–412. doi: 10.1016/s0962-8924(00)01830-4. [DOI] [PubMed] [Google Scholar]
  162. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  163. Vidalain P. O., Azocar O., Servet-Delprat C., Rabourdin-Combe C., Gerlier D., Manié S. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 2000 Jul 3;19(13):3304–3313. doi: 10.1093/emboj/19.13.3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Wang Hongtao, Giuliano Armando E., Cabot Myles C. Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells. Mol Cancer Ther. 2002 Jul;1(9):719–726. [PubMed] [Google Scholar]
  165. Wang Y. M., Seibenhener M. L., Vandenplas M. L., Wooten M. W. Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/JNK kinase and cell survival. J Neurosci Res. 1999 Feb 1;55(3):293–302. doi: 10.1002/(SICI)1097-4547(19990201)55:3<293::AID-JNR4>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  166. Yan F., Polk D. B. Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells. Cancer Res. 2001 Feb 1;61(3):963–969. [PubMed] [Google Scholar]
  167. Zha X., Pierini L. M., Leopold P. L., Skiba P. J., Tabas I., Maxfield F. R. Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol. 1998 Jan 12;140(1):39–47. doi: 10.1083/jcb.140.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Zhang G., Kazanietz M. G., Blumberg P. M., Hurley J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell. 1995 Jun 16;81(6):917–924. doi: 10.1016/0092-8674(95)90011-x. [DOI] [PubMed] [Google Scholar]
  169. Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]
  170. Zhang Y., Yao B., Delikat S., Bayoumy S., Lin X. H., Basu S., McGinley M., Chan-Hui P. Y., Lichenstein H., Kolesnick R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell. 1997 Apr 4;89(1):63–72. doi: 10.1016/s0092-8674(00)80183-x. [DOI] [PubMed] [Google Scholar]
  171. Zundel W., Swiersz L. M., Giaccia A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol. 2000 Mar;20(5):1507–1514. doi: 10.1128/mcb.20.5.1507-1514.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. van Blitterswijk W. J. Hypothesis: ceramide conditionally activates atypical protein kinases C, Raf-1 and KSR through binding to their cysteine-rich domains. Biochem J. 1998 Apr 15;331(Pt 2):679–680. [PMC free article] [PubMed] [Google Scholar]
  173. van Blitterswijk W. J., van der Meer B. W., Hilkmann H. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry. 1987 Mar 24;26(6):1746–1756. doi: 10.1021/bi00380a038. [DOI] [PubMed] [Google Scholar]
  174. van Helvoort A., Stoorvogel W., van Meer G., Burger N. J. Sphingomyelin synthase is absent from endosomes. J Cell Sci. 1997 Mar;110(Pt 6):781–788. doi: 10.1242/jcs.110.6.781. [DOI] [PubMed] [Google Scholar]
  175. van Helvoort A., van't Hof W., Ritsema T., Sandra A., van Meer G. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem. 1994 Jan 21;269(3):1763–1769. [PubMed] [Google Scholar]
  176. van Meer G., Holthuis J. C. Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta. 2000 Jun 26;1486(1):145–170. doi: 10.1016/s1388-1981(00)00054-8. [DOI] [PubMed] [Google Scholar]
  177. van der Luit Arnold H., Budde Marianne, Ruurs Paula, Verheij Marcel, van Blitterswijk Wim J. Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem. 2002 Aug 14;277(42):39541–39547. doi: 10.1074/jbc.M203176200. [DOI] [PubMed] [Google Scholar]
  178. von Haefen Clarissa, Wieder Thomas, Gillissen Bernd, Stärck Lilian, Graupner Vilma, Dörken Bernd, Daniel Peter T. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002 Jun 6;21(25):4009–4019. doi: 10.1038/sj.onc.1205497. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES