Abstract
Glucagon-like peptide-1 (GLP-1) is a potent regulator of glucose-stimulated insulin secretion whose mechanisms of action are only partly understood. In the present paper, we show that at low (3 mM) glucose concentrations, GLP-1 increases the free intramitochondrial concentrations of both Ca(2+) ([Ca(2+)](m)), and ATP ([ATP](m)) in clonal MIN6 beta-cells. Suggesting that cAMP-mediated release of Ca(2+) from intracellular stores is responsible for these effects, increases in [ATP](m) that were induced by GLP-1 were completely blocked by the Rp isomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), or by chelation of intracellular Ca(2+). Furthermore, inhibition of Ins(1,4,5) P (3) (IP(3)) receptors with xestospongin C, or application of ryanodine, partially inhibited GLP-1-induced [ATP](m) increases, and the simultaneous blockade of both IP(3) and ryanodine receptors (RyR) completely eliminated the rise in [ATP](m). GLP-1 appeared to prompt Ca(2+)-induced Ca(2+) release through IP(3) receptors via a protein kinase A (PKA)-mediated phosphorylation event, since ryanodine-insensitive [ATP](m) increases were abrogated with the PKA inhibitor, H89. In contrast, the effects of GLP-1 on RyR-mediated [ATP](m) increases were apparently mediated by the cAMP-regulated guanine nucleotide exchange factor cAMP-GEFII, since xestospongin C-insensitive [ATP](m) increases were blocked by a dominant-negative form of cAMP-GEFII (G114E,G422D). Taken together, these results demonstrate that GLP-1 potentiates glucose-stimulated insulin release in part via the mobilization of intracellular Ca(2+), and the stimulation of mitochondrial ATP synthesis.
Full Text
The Full Text of this article is available as a PDF (560.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev. 1999 Apr;20(2):101–135. doi: 10.1210/edrv.20.2.0361. [DOI] [PubMed] [Google Scholar]
- Ainscow E. K., Rutter G. A. Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. Biochem J. 2001 Jan 15;353(Pt 2):175–180. doi: 10.1042/0264-6021:3530175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ainscow E. K., Zhao C., Rutter G. A. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes. 2000 Jul;49(7):1149–1155. doi: 10.2337/diabetes.49.7.1149. [DOI] [PubMed] [Google Scholar]
- Aizawa T., Kaneko T., Yajima H., Yamada S., Sato Y., Kanda Y., Kanda S., Noda M., Kadowaki T., Nagai M. Rapid oscillation of insulin release by the rat pancreatic islets under stringent Ca2+-free conditions. J Endocrinol. 2000 Sep;166(3):545–551. doi: 10.1677/joe.0.1660545. [DOI] [PubMed] [Google Scholar]
- Aizawa T., Komatsu M., Asanuma N., Sato Y., Sharp G. W. Glucose action 'beyond ionic events' in the pancreatic beta cell. Trends Pharmacol Sci. 1998 Dec;19(12):496–499. doi: 10.1016/s0165-6147(98)01273-5. [DOI] [PubMed] [Google Scholar]
- Bode H. P., Moormann B., Dabew R., Göke B. Glucagon-like peptide 1 elevates cytosolic calcium in pancreatic beta-cells independently of protein kinase A. Endocrinology. 1999 Sep;140(9):3919–3927. doi: 10.1210/endo.140.9.6947. [DOI] [PubMed] [Google Scholar]
- Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
- Cullinan C. A., Brady E. J., Saperstein R., Leibowitz M. D. Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual ob/ob mouse beta-cells. Cell Calcium. 1994 May;15(5):391–400. doi: 10.1016/0143-4160(94)90014-0. [DOI] [PubMed] [Google Scholar]
- De Smet P., Parys J. B., Callewaert G., Weidema A. F., Hill E., De Smedt H., Erneux C., Sorrentino V., Missiaen L. Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca(2+) pumps. Cell Calcium. 1999 Jul-Aug;26(1-2):9–13. doi: 10.1054/ceca.1999.0047. [DOI] [PubMed] [Google Scholar]
- Fisher R. J., Burgoyne R. D. The effect of transfection with Botulinum neurotoxin C1 light chain on exocytosis measured in cell populations and by single-cell amperometry in PC12 cells. Pflugers Arch. 1999 Apr;437(5):754–762. doi: 10.1007/s004240050842. [DOI] [PubMed] [Google Scholar]
- Gafni J., Munsch J. A., Lam T. H., Catlin M. C., Costa L. G., Molinski T. F., Pessah I. N. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron. 1997 Sep;19(3):723–733. doi: 10.1016/s0896-6273(00)80384-0. [DOI] [PubMed] [Google Scholar]
- Gembal M., Gilon P., Henquin J. C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest. 1992 Apr;89(4):1288–1295. doi: 10.1172/JCI115714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gromada J., Ding W. G., Barg S., Renström E., Rorsman P. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch. 1997 Sep;434(5):515–524. doi: 10.1007/s004240050431. [DOI] [PubMed] [Google Scholar]
- Gromada J., Dissing S., Bokvist K., Renström E., Frøkjaer-Jensen J., Wulff B. S., Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes. 1995 Jul;44(7):767–774. doi: 10.2337/diab.44.7.767. [DOI] [PubMed] [Google Scholar]
- Gromada J., Holst J. J., Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch. 1998 Apr;435(5):583–594. doi: 10.1007/s004240050558. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. Regulation of insulin release by ionic and electrical events in B cells. Horm Res. 1987;27(3):168–178. doi: 10.1159/000180806. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000 Nov;49(11):1751–1760. doi: 10.2337/diabetes.49.11.1751. [DOI] [PubMed] [Google Scholar]
- Henquin Jean-Claude, Ishiyama Nobuyoshi, Nenquin Myriam, Ravier Magalie A., Jonas Jean-Christophe. Signals and pools underlying biphasic insulin secretion. Diabetes. 2002 Feb;51 (Suppl 1):S60–S67. doi: 10.2337/diabetes.51.2007.s60. [DOI] [PubMed] [Google Scholar]
- Holz G. G., 4th, Leech C. A., Habener J. F. Activation of a cAMP-regulated Ca(2+)-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem. 1995 Jul 28;270(30):17749–17757. [PMC free article] [PubMed] [Google Scholar]
- Holz G. G., Leech C. A., Heller R. S., Castonguay M., Habener J. F. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem. 1999 May 14;274(20):14147–14156. doi: 10.1074/jbc.274.20.14147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam M. S., Leibiger I., Leibiger B., Rossi D., Sorrentino V., Ekström T. J., Westerblad H., Andrade F. H., Berggren P. O. In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6145–6150. doi: 10.1073/pnas.95.11.6145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam M. S., Rorsman P., Berggren P. O. Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 1992 Jan 27;296(3):287–291. doi: 10.1016/0014-5793(92)80306-2. [DOI] [PubMed] [Google Scholar]
- Jouaville L. S., Pinton P., Bastianutto C., Rutter G. A., Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13807–13812. doi: 10.1073/pnas.96.24.13807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang G., Chepurny O. G., Holz G. G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001 Oct 15;536(Pt 2):375–385. doi: 10.1111/j.1469-7793.2001.0375c.xd. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kashima Y., Miki T., Shibasaki T., Ozaki N., Miyazaki M., Yano H., Seino S. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem. 2001 Oct 11;276(49):46046–46053. doi: 10.1074/jbc.M108378200. [DOI] [PubMed] [Google Scholar]
- Kawasaki H., Springett G. M., Mochizuki N., Toki S., Nakaya M., Matsuda M., Housman D. E., Graybiel A. M. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998 Dec 18;282(5397):2275–2279. doi: 10.1126/science.282.5397.2275. [DOI] [PubMed] [Google Scholar]
- Kennedy E. D., Rizzuto R., Theler J. M., Pralong W. F., Bastianutto C., Pozzan T., Wollheim C. B. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest. 1996 Dec 1;98(11):2524–2538. doi: 10.1172/JCI119071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy H. J., Pouli A. E., Ainscow E. K., Jouaville L. S., Rizzuto R., Rutter G. A. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem. 1999 May 7;274(19):13281–13291. doi: 10.1074/jbc.274.19.13281. [DOI] [PubMed] [Google Scholar]
- Kleppisch T., Nelson M. T. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12441–12445. doi: 10.1073/pnas.92.26.12441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsu M., Schermerhorn T., Aizawa T., Sharp G. W. Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10728–10732. doi: 10.1073/pnas.92.23.10728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. J., Grapengiesser E., Gylfe E., Hellman B. Crosstalk between the cAMP and inositol trisphosphate-signalling pathways in pancreatic beta-cells. Arch Biochem Biophys. 1996 Oct 15;334(2):295–302. doi: 10.1006/abbi.1996.0458. [DOI] [PubMed] [Google Scholar]
- Maechler P., Wollheim C. B. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol. 2000 Nov 15;529(Pt 1):49–56. doi: 10.1111/j.1469-7793.2000.00049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000 May 12;101(4):365–376. doi: 10.1016/s0092-8674(00)80847-8. [DOI] [PubMed] [Google Scholar]
- Mitchell K. J., Pinton P., Varadi A., Tacchetti C., Ainscow E. K., Pozzan T., Rizzuto R., Rutter G. A. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol. 2001 Sep 24;155(1):41–51. doi: 10.1083/jcb.200103145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
- Montague W., Cook J. R. The role of adenosine 3':5'-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem J. 1971 Mar;122(1):115–120. doi: 10.1042/bj1220115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montague W., Howell S. L. The mode of action of adenosine 3':5'-cyclic monophosphate in mammalian islets of Langerhans. Preparation and properties of islet-cell protein phosphokinase. Biochem J. 1972 Sep;129(3):551–560. doi: 10.1042/bj1290551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakade S., Rhee S. K., Hamanaka H., Mikoshiba K. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J Biol Chem. 1994 Mar 4;269(9):6735–6742. [PubMed] [Google Scholar]
- Nakagaki I., Sasaki S., Hori S., Kondo H. Ca2+ and electrolyte mobilization following agonist application to the pancreatic beta cell line HIT. Pflugers Arch. 2000 Oct;440(6):828–834. doi: 10.1007/s004240000372. [DOI] [PubMed] [Google Scholar]
- Nakazaki M., Ishihara H., Kakei M., Inukai K., Asano T., Miyazaki J. I., Tanaka H., Kikuchi M., Yada T., Oka Y. Repetitive mitochondrial Ca2+ signals synchronize with cytosolic Ca2+ oscillations in the pancreatic beta-cell line, MIN6. Diabetologia. 1998 Mar;41(3):279–286. doi: 10.1007/s001250050904. [DOI] [PubMed] [Google Scholar]
- Ozaki N., Shibasaki T., Kashima Y., Miki T., Takahashi K., Ueno H., Sunaga Y., Yano H., Matsuura Y., Iwanaga T. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000 Nov;2(11):805–811. doi: 10.1038/35041046. [DOI] [PubMed] [Google Scholar]
- Ozawa T. Cyclic AMP induces ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells. Biochem Biophys Res Commun. 1998 May 19;246(2):422–425. doi: 10.1006/bbrc.1998.8636. [DOI] [PubMed] [Google Scholar]
- Pinton Paolo, Tsuboi Takashi, Ainscow Edward K., Pozzan Tullio, Rizzuto Rosario, Rutter Guy A. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J Biol Chem. 2002 Jul 30;277(40):37702–37710. doi: 10.1074/jbc.M204478200. [DOI] [PubMed] [Google Scholar]
- Rafiq I., da Silva Xavier G., Hooper S., Rutter G. A. Glucose-stimulated preproinsulin gene expression and nuclear trans-location of pancreatic duodenum homeobox-1 require activation of phosphatidylinositol 3-kinase but not p38 MAPK/SAPK2. J Biol Chem. 2000 May 26;275(21):15977–15984. doi: 10.1074/jbc.275.21.15977. [DOI] [PubMed] [Google Scholar]
- Reale V., Hales C. N., Ashford M. L. Regulation of calcium-activated nonselective cation channel activity by cyclic nucleotides in the rat insulinoma cell line, CRI-G1. J Membr Biol. 1995 Jun;145(3):267–278. doi: 10.1007/BF00232718. [DOI] [PubMed] [Google Scholar]
- Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
- Rizzuto R., Simpson A. W., Brini M., Pozzan T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992 Jul 23;358(6384):325–327. doi: 10.1038/358325a0. [DOI] [PubMed] [Google Scholar]
- Rutter G. A. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol Aspects Med. 2001 Dec;22(6):247–284. doi: 10.1016/s0098-2997(01)00013-9. [DOI] [PubMed] [Google Scholar]
- Rutter G. A., Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci. 2000 May;25(5):215–221. doi: 10.1016/s0968-0004(00)01585-1. [DOI] [PubMed] [Google Scholar]
- Rutter G. A., Theler J. M., Murgia M., Wollheim C. B., Pozzan T., Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem. 1993 Oct 25;268(30):22385–22390. [PubMed] [Google Scholar]
- Safayhi H., Haase H., Kramer U., Bihlmayer A., Roenfeldt M., Ammon H. P., Froschmayr M., Cassidy T. N., Morano I., Ahlijanian M. K. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol. 1997 May;11(5):619–629. doi: 10.1210/mend.11.5.9922. [DOI] [PubMed] [Google Scholar]
- Schuit F. C., Pipeleers D. G. Regulation of adenosine 3',5'-monophosphate levels in the pancreatic B cell. Endocrinology. 1985 Sep;117(3):834–840. doi: 10.1210/endo-117-3-834. [DOI] [PubMed] [Google Scholar]
- Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8641–8645. doi: 10.1073/pnas.89.18.8641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varadi Aniko, Ainscow Edward K., Allan Victoria J., Rutter Guy A. Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci. 2002 Nov 1;115(Pt 21):4177–4189. doi: 10.1242/jcs.00083. [DOI] [PubMed] [Google Scholar]
- Varadi Aniko, Rutter Guy A. Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 Cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2 and ryanodine receptors. Diabetes. 2002 Feb;51 (Suppl 1):S190–S201. doi: 10.2337/diabetes.51.2007.s190. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Biden T. J. Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J Biol Chem. 1986 Jun 25;261(18):8314–8319. [PubMed] [Google Scholar]