Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):573–581. doi: 10.1042/BJ20021047

Acetylacetone-cleaving enzyme Dke1: a novel C-C-bond-cleaving enzyme from Acinetobacter johnsonii.

Grit D Straganz 1, Anton Glieder 1, Lothar Brecker 1, Douglas W Ribbons 1, Walter Steiner 1
PMCID: PMC1223103  PMID: 12379146

Abstract

The toxicity of acetylacetone has been demonstrated in various studies. Little is known, however, about metabolic pathways for its detoxification or mineralization. Data presented here describe for the first time the microbial degradation of acetylacetone and the characterization of a novel enzyme that initiates the metabolic pathway. From an Acinetobacter johnsonii strain that grew with acetylacetone as the sole carbon source, an inducible acetylacetone-cleaving enzyme was purified to homogeneity. The corresponding gene, coding for a 153 amino acid sequence that does not show any significant relationship to other known protein sequences, was cloned and overexpressed in Escherichia coli and gave high yields of active enzyme. The enzyme cleaves acetylacetone to equimolar amounts of methylglyoxal and acetate, consuming one equivalent of molecular oxygen. No exogenous cofactor is required, but Fe(2+) is bound to the active protein and essential for its catalytic activity. The enzyme has a high affinity for acetylacetone with a K (m) of 9.1 microM and a k(cat) of 8.5 s(-1). A metabolic pathway for acetylacetone degradation and the putative relationship of this novel enzyme to previously described dioxygenases are discussed.

Full Text

The Full Text of this article is available as a PDF (211.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Mjeni Faizah, Ju Tingting, Pochapsky Thomas C., Maroney Michael J. XAS investigation of the structure and function of Ni in acireductone dioxygenase. Biochemistry. 2002 May 28;41(21):6761–6769. doi: 10.1021/bi012209a. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballantyne B., Cawley T. J. 2,4-Pentanedione. J Appl Toxicol. 2001 Mar-Apr;21(2):165–171. doi: 10.1002/jat.739. [DOI] [PubMed] [Google Scholar]
  4. Brecker L., Ribbons D. W. Biotransformations monitored in situ by proton nuclear magnetic resonance spectroscopy. Trends Biotechnol. 2000 May;18(5):197–202. doi: 10.1016/s0167-7799(00)01425-6. [DOI] [PubMed] [Google Scholar]
  5. Broderick J. B. Catechol dioxygenases. Essays Biochem. 1999;34:173–189. doi: 10.1042/bse0340173. [DOI] [PubMed] [Google Scholar]
  6. Fusetti Fabrizia, Schröter Klaus H., Steiner Roberto A., van Noort Paula I., Pijning Tjaard, Rozeboom Henriëtte J., Kalk Kor H., Egmond Maarten R., Dijkstra Bauke W. Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure. 2002 Feb;10(2):259–268. doi: 10.1016/s0969-2126(02)00704-9. [DOI] [PubMed] [Google Scholar]
  7. Galas D. J., Eggert M., Waterman M. S. Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. J Mol Biol. 1985 Nov 5;186(1):117–128. doi: 10.1016/0022-2836(85)90262-1. [DOI] [PubMed] [Google Scholar]
  8. Hopper D. J., Kaderbhai M. A. 2,4'-Dihydroxyacetophenone dioxygenase (EC 1.13.11.41) from Alcaligenes sp. 4HAP: a novel enzyme with an atypical dioxygenase sequence. Biochem J. 1999 Dec 1;344(Pt 2):397–402. [PMC free article] [PubMed] [Google Scholar]
  9. Hore P. J. Nuclear magnetic resonance. Solvent suppression. Methods Enzymol. 1989;176:64–77. [PubMed] [Google Scholar]
  10. Kamoda S., Terada T., Saburi Y. Purification and some properties of lignostilbene-alpha, beta-dioxygenase isozyme IV from Pseudomonas paucimobilis TMY1009. Biosci Biotechnol Biochem. 1997 Sep;61(9):1575–1576. doi: 10.1271/bbb.61.1575. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Myers R. W., Wray J. W., Fish S., Abeles R. H. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J Biol Chem. 1993 Nov 25;268(33):24785–24791. [PubMed] [Google Scholar]
  13. Mäkinen K. K., Tenovuo J. Observations on the use of guaiacol and 2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) as peroxidase substrates. Anal Biochem. 1982 Oct;126(1):100–108. doi: 10.1016/0003-2697(82)90114-2. [DOI] [PubMed] [Google Scholar]
  14. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992 May;6(9):1219–1229. doi: 10.1111/j.1365-2958.1992.tb01561.x. [DOI] [PubMed] [Google Scholar]
  15. Wray J. W., Abeles R. H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J Biol Chem. 1995 Feb 17;270(7):3147–3153. doi: 10.1074/jbc.270.7.3147. [DOI] [PubMed] [Google Scholar]
  16. von Lintig J., Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000 Apr 21;275(16):11915–11920. doi: 10.1074/jbc.275.16.11915. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES