Abstract
The role of the highly reactive triose sugars glyceraldehyde and glyceraldehyde-3-phosphate in protein cross-linking and other amino acid modifications during the Maillard reaction was investigated. From the incubation of glyceraldehyde with N (alpha)-acetyl-L-lysine and N (alpha)-acetyl-L-arginine, we isolated four new Maillard reaction pyridinium compounds named 'triosidines'. Two of them, 'lys-hydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3-[(5-amino-5-carboxypentylamino)methyl]-5-hydroxypyridinium] and 'arg-hydroxy-triosidine' [2-(4-amino-4-carboxybutylamino)-8-(5-amino-5-carboxypentyl)-6-hydroxy-3,4-dihydro-pyrido[2,3-d]pyrimidin-8-ium] are fluorescent, UV-active Lys-Lys and Lys-Arg cross-links respectively. Their structures were identified by NMR and MS. In addition, two UV-active lysine adducts, 'trihydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3,4-dihydroxy-5-(hydroxymethyl)pyridinium] and 'triosidine carbaldehyde' [1-(5-amino-5-carboxypentyl)-3-formylpyridinium] were tentatively identified by MS. All structures involve six sugar-derived carbons as part of the heterocyclic ring. Of the two novel cross-links, only arg-hydroxy-triosidine was formed by glyceraldehyde-3-phosphate, an intermediate metabolite of the glycolytic pathway. Lys-hydroxy-triosidine and arg-hydroxy-triosidine were detected in human and porcine corneas treated with glyceraldehyde. The HPLC-fluorescence identification was confirmed by MS. Triosidines were also formed from dihydroxyacetone, a widely used artificial sun-tanning agent. Triosidines are expected to be useful tools in tissue engineering, where the utilization of highly reactive sugars is needed to stabilize the loose matrix. In addition, they are expected to be present in selected biological conditions, such as on consumption of a high fructose diet, and syndromes associated with high glyceraldehyde excretion, such as Fanconi Syndrome, fructose-1,6-diphosphatase deficiency and tyrosinaemia.
Full Text
The Full Text of this article is available as a PDF (338.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acharya A. S., Cho Y. J., Manjula B. N. Cross-linking of proteins by aldotriose: reaction of the carbonyl function of the keto amines generated in situ with amino groups. Biochemistry. 1988 Jun 14;27(12):4522–4529. doi: 10.1021/bi00412a045. [DOI] [PubMed] [Google Scholar]
- Acharya A. S., Manning J. M. Reactivity of the amino groups of carbonmonoxyhemoglobin S with glyceraldehyde. J Biol Chem. 1980 Feb 25;255(4):1406–1412. [PubMed] [Google Scholar]
- Ahmed M. U., Brinkmann Frye E., Degenhardt T. P., Thorpe S. R., Baynes J. W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
- Bai Y., Ueno H., Manning J. M. Some factors that influence the nonenzymatic glycation of peptides and polypeptides by glyceraldehyde. J Protein Chem. 1989 Apr;8(2):299–315. doi: 10.1007/BF01024951. [DOI] [PubMed] [Google Scholar]
- Benjamin L. J., Manning J. M. Enhanced survival of sickle erythrocytes upon treatment with glyceraldehyde. Blood. 1986 Feb;67(2):544–546. [PubMed] [Google Scholar]
- Biemel K. M., Reihl O., Conrad J., Lederer M. O. Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor. J Biol Chem. 2001 Mar 28;276(26):23405–23412. doi: 10.1074/jbc.M102035200. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., Higgins P. J. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981 Jul 10;213(4504):222–224. doi: 10.1126/science.12192669. [DOI] [PubMed] [Google Scholar]
- Chellan P., Nagaraj R. H. Early glycation products produce pentosidine cross-links on native proteins. novel mechanism of pentosidine formation and propagation of glycation. J Biol Chem. 2000 Nov 13;276(6):3895–3903. doi: 10.1074/jbc.M008626200. [DOI] [PubMed] [Google Scholar]
- Dunn J. A., McCance D. R., Thorpe S. R., Lyons T. J., Baynes J. W. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 1991 Feb 5;30(5):1205–1210. doi: 10.1021/bi00219a007. [DOI] [PubMed] [Google Scholar]
- Dyer D. G., Blackledge J. A., Thorpe S. R., Baynes J. W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991 Jun 25;266(18):11654–11660. [PubMed] [Google Scholar]
- Endres J., Poon S. W., Welch P. Diabetics in long-term care. Effect of sweetness on dietary intake. Ann N Y Acad Sci. 1989;561:157–161. doi: 10.1111/j.1749-6632.1989.tb20978.x. [DOI] [PubMed] [Google Scholar]
- Eng C. P., Bhatnagar M. K., Morgan J. F. Inhibition of mouse ascites tumors by carbohydrate combined with immunization. Can J Physiol Pharmacol. 1972 Feb;50(2):156–163. doi: 10.1139/y72-022. [DOI] [PubMed] [Google Scholar]
- Fitzgerald C., Swearengin T. A., Yeargans G., McWhorter D., Cucchetti B., Seidler N. W. Non-enzymatic glycosylation (or glycation) and inhibition of the pig heart cytosolic aspartate aminotransferase by glyceraldehyde 3-phosphate. J Enzyme Inhib. 2000;15(1):79–89. [PubMed] [Google Scholar]
- Girton T. S., Oegema T. R., Tranquillo R. T. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J Biomed Mater Res. 1999 Jul;46(1):87–92. doi: 10.1002/(sici)1097-4636(199907)46:1<87::aid-jbm10>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Glomb M. A., Monnier V. M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995 Apr 28;270(17):10017–10026. doi: 10.1074/jbc.270.17.10017. [DOI] [PubMed] [Google Scholar]
- Grandhee S. K., Monnier V. M. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991 Jun 25;266(18):11649–11653. [PubMed] [Google Scholar]
- Heinz F., Junghänel J. Metabolitmuster in Rattenleber nach Fructoseapplikation. Hoppe Seylers Z Physiol Chem. 1969 Jul;350(7):859–866. [PubMed] [Google Scholar]
- Jonas A. J., Lin S. N., Conley S. B., Schneider J. A., Williams J. C., Caprioli R. C. Urine glyceraldehyde excretion is elevated in the renal Fanconi syndrome. Kidney Int. 1989 Jan;35(1):99–104. doi: 10.1038/ki.1989.14. [DOI] [PubMed] [Google Scholar]
- Lee K. W., Simpson G., Ortwerth B. A systematic approach to evaluate the modification of lens proteins by glycation-induced crosslinking. Biochim Biophys Acta. 1999 Jan 6;1453(1):141–151. doi: 10.1016/s0925-4439(98)00097-0. [DOI] [PubMed] [Google Scholar]
- Lo T. W., Westwood M. E., McLellan A. C., Selwood T., Thornalley P. J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994 Dec 23;269(51):32299–32305. [PubMed] [Google Scholar]
- Miller E. J., Gay S. Collagen: an overview. Methods Enzymol. 1982;82(Pt A):3–32. doi: 10.1016/0076-6879(82)82058-2. [DOI] [PubMed] [Google Scholar]
- Monnier V. M., Kohn R. R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):583–587. doi: 10.1073/pnas.81.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murata T., Miwa I., Toyoda Y., Okuda J. Inhibition of glucose-induced insulin secretion through inactivation of glucokinase by glyceraldehyde. Diabetes. 1993 Jul;42(7):1003–1009. doi: 10.2337/diab.42.7.1003. [DOI] [PubMed] [Google Scholar]
- Nagaraj R. H., Portero-Otin M., Monnier V. M. Pyrraline ether crosslinks as a basis for protein crosslinking by the advanced Maillard reaction in aging and diabetes. Arch Biochem Biophys. 1996 Jan 15;325(2):152–158. doi: 10.1006/abbi.1996.0019. [DOI] [PubMed] [Google Scholar]
- Nakai A., Shigematsu Y., Liu Y. Y., Kikawa Y., Sudo M. Urinary sugar phosphates and related organic acids in fructose-1,6-diphosphatase deficiency. J Inherit Metab Dis. 1993;16(2):408–414. doi: 10.1007/BF00710290. [DOI] [PubMed] [Google Scholar]
- Nigen A. M., Manning J. M. Effects of glyceraldehyde on the structural and functional properties of sickle erythrocytes. J Clin Invest. 1978 Jan;61(1):11–19. doi: 10.1172/JCI108909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohmori S., Mori M., Shiraha K., Kawase M. Biosynthesis and degradation of methylglyoxal in animals. Prog Clin Biol Res. 1989;290:397–412. [PubMed] [Google Scholar]
- Prabhakaram M., Ortwerth B. J. Determination of glycation crosslinking by the sugar-dependent incorporation of [14C]lysine into protein. Anal Biochem. 1994 Feb 1;216(2):305–312. doi: 10.1006/abio.1994.1046. [DOI] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
- Shamsi F. A., Partal A., Sady C., Glomb M. A., Nagaraj R. H. Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. J Biol Chem. 1998 Mar 20;273(12):6928–6936. doi: 10.1074/jbc.273.12.6928. [DOI] [PubMed] [Google Scholar]
- Shipanova I. N., Glomb M. A., Nagaraj R. H. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch Biochem Biophys. 1997 Aug 1;344(1):29–36. doi: 10.1006/abbi.1997.0195. [DOI] [PubMed] [Google Scholar]
- Sillero M. A., Sillero A., Sols A. Enzymes involved in fructose metabolism in lir and the glyceraldehyde metabolic crossroads. Eur J Biochem. 1969 Sep;10(2):345–350. doi: 10.1111/j.1432-1033.1969.tb00696.x. [DOI] [PubMed] [Google Scholar]
- Stevens A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J Am Optom Assoc. 1995 Dec;66(12):744–749. [PubMed] [Google Scholar]
- Syrový I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods. 1994 Mar;28(2):115–121. doi: 10.1016/0165-022x(94)90025-6. [DOI] [PubMed] [Google Scholar]
- Takeuchi M., Makita Z., Bucala R., Suzuki T., Koike T., Kameda Y. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo. Mol Med. 2000 Feb;6(2):114–125. [PMC free article] [PubMed] [Google Scholar]
- Tessier F., Obrenovich M., Monnier V. M. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J Biol Chem. 1999 Jul 23;274(30):20796–20804. doi: 10.1074/jbc.274.30.20796. [DOI] [PubMed] [Google Scholar]
- Thornalley P., Wolff S., Crabbe J., Stern A. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta. 1984 Feb 14;797(2):276–287. doi: 10.1016/0304-4165(84)90131-4. [DOI] [PubMed] [Google Scholar]
- Tomer K. B., Rothman R., Yudkoff M., Segal S. Unusual pattern of metabolites in the urine of child with tyrosinemia: glyceraldehyde. Clin Chim Acta. 1977 Dec 1;81(2):109–117. doi: 10.1016/0009-8981(77)90001-8. [DOI] [PubMed] [Google Scholar]
- Umeda H., Nakamura F., Suyama K. Oxodesmosine and isooxodesmosine, candidates of oxidative metabolic intermediates of pyridinium cross-links in elastin. Arch Biochem Biophys. 2001 Jan 1;385(1):209–219. doi: 10.1006/abbi.2000.2145. [DOI] [PubMed] [Google Scholar]
- Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364–4369. [PubMed] [Google Scholar]
- Young L. Y., Mitchell R. Negative chemotaxis of marine bacteria to toxic chemicals. Appl Microbiol. 1973 Jun;25(6):972–975. doi: 10.1128/am.25.6.972-975.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]