Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):461–468. doi: 10.1042/BJ20020593

Role of Cys41 in the N-terminal domain of lumican in ex vivo collagen fibrillogenesis by cultured corneal stromal cells.

Eric C Carlson 1, Kazuhisa Mamiya 1, Chia-Yang Liu 1, Robert L Gendron 1, David E Birk 1, James L Funderburgh 1, Winston W-Y Kao 1
PMCID: PMC1223108  PMID: 12381269

Abstract

The keratan sulphate proteoglycan lumican regulates collagen fibrillogenesis to maintain the integrity and function of connective tissues such as cornea. We examined the role of a highly conserved cysteine-containing domain proximal to the N-terminus of lumican in collagen fibrillogenesis using site-specific mutagenesis to prepare plasmid DNA encoding wild-type murine lumican (Cys(37)-Xaa(3)-Cys(41)-Xaa-Cys-Xaa(9)-Cys) and a Cys-->Ser (C/S) mutant (Cys(37)-Xaa(3)-Ser(41)-Xaa-Cys-Xaa(9)-Cys). cDNAs were cloned into the pSecTag2A vector, and cultures of MK/T-1 cells (an immortalized cell line from mouse keratocytes) were transfected with the cDNAs. Stable transformants were selected and cloned in the presence of Zeocin. All stable transformants maintained a dendritic morphology and growth rate similar to those of parental MK/T-1 cells. Western blot analysis with anti-lumican antibody detected a 42 kDa lumican protein secreted into the culture medium of both wild-type and C/S mutant lumican cell lines. Ultrastructural analyses by transmission electron microscopy showed both cell lines to form a multi-layered stroma ex vivo, but the matrix assembled by the two cell lines differed. Compared with the mutant cell line, the wild-type cells assembled a more organized matrix with regions containing orthogonal collagen fibrils. In addition, the fibrils in the extracellular matrix formed by the mutant cell line exhibited alterations in fibril packing and structure. Immunostaining analysed by confocal microscopy showed a further difference in this matrix, with the marked occurrence of lumican and collagen I co-localization in the lumican wild-type cells, but a lack thereof in the lumican C/S mutant cells. The results indicate that the cysteine-rich domain of lumican is important in collagen fibrillogenesis and stromal matrix assembly.

Full Text

The Full Text of this article is available as a PDF (372.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi E., Hayashi T. In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. Connect Tissue Res. 1986;14(4):257–266. doi: 10.3109/03008208609017469. [DOI] [PubMed] [Google Scholar]
  2. Bettelheim F. A., Plessy B. The hydration of proteoglycans of bovine cornea. Biochim Biophys Acta. 1975 Jan 13;381(1):203–214. doi: 10.1016/0304-4165(75)90202-0. [DOI] [PubMed] [Google Scholar]
  3. Birk D. E., Fitch J. M., Babiarz J. P., Doane K. J., Linsenmayer T. F. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990 Apr;95(Pt 4):649–657. doi: 10.1242/jcs.95.4.649. [DOI] [PubMed] [Google Scholar]
  4. Birk D. E., Trelstad R. L. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol. 1984 Dec;99(6):2024–2033. doi: 10.1083/jcb.99.6.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birk D. E., Zycband E. I., Woodruff S., Winkelmann D. A., Trelstad R. L. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn. 1997 Mar;208(3):291–298. doi: 10.1002/(SICI)1097-0177(199703)208:3<291::AID-AJA1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  6. Blochberger T. C., Vergnes J. P., Hempel J., Hassell J. R. cDNA to chick lumican (corneal keratan sulfate proteoglycan) reveals homology to the small interstitial proteoglycan gene family and expression in muscle and intestine. J Biol Chem. 1992 Jan 5;267(1):347–352. [PubMed] [Google Scholar]
  7. Chakravarti S., Magnuson T., Lass J. H., Jepsen K. J., LaMantia C., Carroll H. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998 Jun 1;141(5):1277–1286. doi: 10.1083/jcb.141.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornuet P. K., Blochberger T. C., Hassell J. R. Molecular polymorphism of lumican during corneal development. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):870–877. [PubMed] [Google Scholar]
  9. Danielson K. G., Baribault H., Holmes D. F., Graham H., Kadler K. E., Iozzo R. V. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997 Feb 10;136(3):729–743. doi: 10.1083/jcb.136.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doane K. J., Babiarz J. P., Fitch J. M., Linsenmayer T. F., Birk D. E. Collagen fibril assembly by corneal fibroblasts in three-dimensional collagen gel cultures: small-diameter heterotypic fibrils are deposited in the absence of keratan sulfate proteoglycan. Exp Cell Res. 1992 Sep;202(1):113–124. doi: 10.1016/0014-4827(92)90410-a. [DOI] [PubMed] [Google Scholar]
  11. Funderburgh J. L., Funderburgh M. L., Hevelone N. D., Stech M. E., Justice M. J., Liu C. Y., Kao W. W., Conrad G. W. Sequence, molecular properties, and chromosomal mapping of mouse lumican. Invest Ophthalmol Vis Sci. 1995 Oct;36(11):2296–2303. [PubMed] [Google Scholar]
  12. Gendron R. L., Liu C. Y., Paradis H., Adams L. C., Kao W. W. MK/T-1, an immortalized fibroblast cell line derived using cultures of mouse corneal stroma. Mol Vis. 2001 May 8;7:107–113. [PubMed] [Google Scholar]
  13. Grover J., Chen X. N., Korenberg J. R., Roughley P. J. The human lumican gene. Organization, chromosomal location, and expression in articular cartilage. J Biol Chem. 1995 Sep 15;270(37):21942–21949. doi: 10.1074/jbc.270.37.21942. [DOI] [PubMed] [Google Scholar]
  14. Hahn R. A., Birk D. E. beta-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma. Development. 1992 Jun;115(2):383–393. doi: 10.1242/dev.115.2.383. [DOI] [PubMed] [Google Scholar]
  15. Hassell J. R., Cintron C., Kublin C., Newsome D. A. Proteoglycan changes during restoration of transparency in corneal scars. Arch Biochem Biophys. 1983 Apr 15;222(2):362–369. doi: 10.1016/0003-9861(83)90532-5. [DOI] [PubMed] [Google Scholar]
  16. Hay E. D. Development of the vertebrate cornea. Int Rev Cytol. 1980;63:263–322. doi: 10.1016/s0074-7696(08)61760-x. [DOI] [PubMed] [Google Scholar]
  17. Lehr H. A., van der Loos C. M., Teeling P., Gown A. M. Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J Histochem Cytochem. 1999 Jan;47(1):119–126. doi: 10.1177/002215549904700113. [DOI] [PubMed] [Google Scholar]
  18. Linsenmayer T. F., Fitch J. M., Birk D. E. Heterotypic collagen fibrils and stabilizing collagens. Controlling elements in corneal morphogenesis? Ann N Y Acad Sci. 1990;580:143–160. doi: 10.1111/j.1749-6632.1990.tb17926.x. [DOI] [PubMed] [Google Scholar]
  19. Long C. J., Roth M. R., Tasheva E. S., Funderburgh M., Smit R., Conrad G. W., Funderburgh J. L. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem. 2000 May 5;275(18):13918–13923. doi: 10.1074/jbc.275.18.13918. [DOI] [PubMed] [Google Scholar]
  20. McLaughlin J. S., Linsenmayer T. F., Birk D. E. Type V collagen synthesis and deposition by chicken embryo corneal fibroblasts in vitro. J Cell Sci. 1989 Oct;94(Pt 2):371–379. doi: 10.1242/jcs.94.2.371. [DOI] [PubMed] [Google Scholar]
  21. Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
  22. Rada J. A., Cornuet P. K., Hassell J. R. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res. 1993 Jun;56(6):635–648. doi: 10.1006/exer.1993.1081. [DOI] [PubMed] [Google Scholar]
  23. Rawe I. M., Tuft S. J., Meek K. M. Proteoglycan and collagen morphology in superficially scarred rabbit cornea. Histochem J. 1992 Jun;24(6):311–318. doi: 10.1007/BF01046162. [DOI] [PubMed] [Google Scholar]
  24. Saika S., Shiraishi A., Liu C. Y., Funderburgh J. L., Kao C. W., Converse R. L., Kao W. W. Role of lumican in the corneal epithelium during wound healing. J Biol Chem. 2000 Jan 28;275(4):2607–2612. doi: 10.1074/jbc.275.4.2607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scott J. E. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 1996 Jul 9;35(27):8795–8799. doi: 10.1021/bi960773t. [DOI] [PubMed] [Google Scholar]
  26. Weber I. T., Harrison R. W., Iozzo R. V. Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem. 1996 Dec 13;271(50):31767–31770. doi: 10.1074/jbc.271.50.31767. [DOI] [PubMed] [Google Scholar]
  27. Zhan Q., Burrows R., Cintron C. Cloning and in situ hybridization of rabbit decorin in corneal tissues. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):206–215. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES