Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):627–634. doi: 10.1042/BJ20020943

Interdomain communication in the molecular chaperone DnaK.

Wanjiang Han 1, Philipp Christen 1
PMCID: PMC1223109  PMID: 12383055

Abstract

DnaK, a heat-shock protein 70 (Hsp70) homologue in Escherichia coli, possesses a single tryptophan residue in its ATPase domain. Changes in the intrinsic fluorescence of DnaK offer a simple means not only to follow the binding of ATP and of ADP plus the co-chaperone GrpE to the ATPase domain, but also to investigate the kinetics of peptide binding to the substrate-binding domain of ATP.DnaK and GrpE-liganded ADP.DnaK. Addition of ATP or of ADP plus GrpE to nucleotide-free DnaK resulted in a similar decrease in intrinsic fluorescence, indicating similar open conformations of the ATPase domain under these two conditions. Binding of peptide increased the intrinsic fluorescence of both ATP.DnaK and ADP.DnaK.GrpE and rendered their spectra similar to the spectrum of ADP.DnaK with closed conformation of the ATPase domain. These results, together with the differential kinetics of peptide binding to ADP.DnaK on the one hand, and to ATP.DnaK or ADP.DnaK.GrpE on the other, suggest that ligands for either domain, i.e. ATP or ADP plus GrpE for the ATPase domain and peptides for the substrate-binding domain, shift the conformational equilibrium of both domains of DnaK towards the open and closed forms, respectively, in a concerted and parallel manner.

Full Text

The Full Text of this article is available as a PDF (161.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banecki B., Zylicz M., Bertoli E., Tanfani F. Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J Biol Chem. 1992 Dec 15;267(35):25051–25058. [PubMed] [Google Scholar]
  2. Buchberger A., Schröder H., Büttner M., Valencia A., Bukau B. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Nat Struct Biol. 1994 Feb;1(2):95–101. doi: 10.1038/nsb0294-95. [DOI] [PubMed] [Google Scholar]
  3. Buchberger A., Theyssen H., Schröder H., McCarty J. S., Virgallita G., Milkereit P., Reinstein J., Bukau B. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem. 1995 Jul 14;270(28):16903–16910. doi: 10.1074/jbc.270.28.16903. [DOI] [PubMed] [Google Scholar]
  4. Buczynski G., Slepenkov S. V., Sehorn M. G., Witt S. N. Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants. J Biol Chem. 2001 May 14;276(29):27231–27236. doi: 10.1074/jbc.M100237200. [DOI] [PubMed] [Google Scholar]
  5. Feifel B., Sandmeier E., Schönfeld H. J., Christen P. Potassium ions and the molecular-chaperone activity of DnaK. Eur J Biochem. 1996 Apr 1;237(1):318–321. doi: 10.1111/j.1432-1033.1996.0318n.x. [DOI] [PubMed] [Google Scholar]
  6. Feifel B., Schönfeld H. J., Christen P. D-peptide ligands for the co-chaperone DnaJ. J Biol Chem. 1998 May 15;273(20):11999–12002. doi: 10.1074/jbc.273.20.11999. [DOI] [PubMed] [Google Scholar]
  7. Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
  8. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–647. doi: 10.1146/annurev.biochem.70.1.603. [DOI] [PubMed] [Google Scholar]
  9. Harrison C. J., Hayer-Hartl M., Di Liberto M., Hartl F., Kuriyan J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science. 1997 Apr 18;276(5311):431–435. doi: 10.1126/science.276.5311.431. [DOI] [PubMed] [Google Scholar]
  10. Hellebust H., Uhlén M., Enfors S. O. Interaction between heat shock protein DnaK and recombinant staphylococcal protein A. J Bacteriol. 1990 Sep;172(9):5030–5034. doi: 10.1128/jb.172.9.5030-5034.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jordan R., McMacken R. Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. J Biol Chem. 1995 Mar 3;270(9):4563–4569. doi: 10.1074/jbc.270.9.4563. [DOI] [PubMed] [Google Scholar]
  12. Karzai A. W., McMacken R. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J Biol Chem. 1996 May 10;271(19):11236–11246. doi: 10.1074/jbc.271.19.11236. [DOI] [PubMed] [Google Scholar]
  13. Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2874–2878. doi: 10.1073/pnas.88.7.2874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mally A., Witt S. N. GrpE accelerates peptide binding and release from the high affinity state of DnaK. Nat Struct Biol. 2001 Mar;8(3):254–257. doi: 10.1038/85002. [DOI] [PubMed] [Google Scholar]
  15. Mayer M. P., Schröder H., Rüdiger S., Paal K., Laufen T., Bukau B. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol. 2000 Jul;7(7):586–593. doi: 10.1038/76819. [DOI] [PubMed] [Google Scholar]
  16. McCarty J. S., Buchberger A., Reinstein J., Bukau B. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol. 1995 May 26;249(1):126–137. doi: 10.1006/jmbi.1995.0284. [DOI] [PubMed] [Google Scholar]
  17. Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
  18. Packschies L., Theyssen H., Buchberger A., Bukau B., Goody R. S., Reinstein J. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry. 1997 Mar 25;36(12):3417–3422. doi: 10.1021/bi962835l. [DOI] [PubMed] [Google Scholar]
  19. Palleros D. R., Reid K. L., McCarty J. S., Walker G. C., Fink A. L. DnaK, hsp73, and their molten globules. Two different ways heat shock proteins respond to heat. J Biol Chem. 1992 Mar 15;267(8):5279–5285. [PubMed] [Google Scholar]
  20. Palleros D. R., Reid K. L., Shi L., Welch W. J., Fink A. L. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature. 1993 Oct 14;365(6447):664–666. doi: 10.1038/365664a0. [DOI] [PubMed] [Google Scholar]
  21. Pellecchia M., Montgomery D. L., Stevens S. Y., Vander Kooi C. W., Feng H. P., Gierasch L. M., Zuiderweg E. R. Structural insights into substrate binding by the molecular chaperone DnaK. Nat Struct Biol. 2000 Apr;7(4):298–303. doi: 10.1038/74062. [DOI] [PubMed] [Google Scholar]
  22. Pierpaoli E. V., Gisler S. M., Christen P. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry. 1998 Nov 24;37(47):16741–16748. doi: 10.1021/bi981762y. [DOI] [PubMed] [Google Scholar]
  23. Pierpaoli E. V., Sandmeier E., Baici A., Schönfeld H. J., Gisler S., Christen P. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J Mol Biol. 1997 Jun 27;269(5):757–768. doi: 10.1006/jmbi.1997.1072. [DOI] [PubMed] [Google Scholar]
  24. Pierpaoli E. V., Sandmeier E., Schönfeld H. J., Christen P. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. J Biol Chem. 1998 Mar 20;273(12):6643–6649. doi: 10.1074/jbc.273.12.6643. [DOI] [PubMed] [Google Scholar]
  25. Schmid D., Baici A., Gehring H., Christen P. Kinetics of molecular chaperone action. Science. 1994 Feb 18;263(5149):971–973. doi: 10.1126/science.8310296. [DOI] [PubMed] [Google Scholar]
  26. Schönfeld H. J., Schmidt D., Schröder H., Bukau B. The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem. 1995 Feb 3;270(5):2183–2189. doi: 10.1074/jbc.270.5.2183. [DOI] [PubMed] [Google Scholar]
  27. Slepenkov S. V., Witt S. N. Peptide-induced conformational changes in the molecular chaperone DnaK. Biochemistry. 1998 Nov 24;37(47):16749–16756. doi: 10.1021/bi981738k. [DOI] [PubMed] [Google Scholar]
  28. Theyssen H., Schuster H. P., Packschies L., Bukau B., Reinstein J. The second step of ATP binding to DnaK induces peptide release. J Mol Biol. 1996 Nov 15;263(5):657–670. doi: 10.1006/jmbi.1996.0606. [DOI] [PubMed] [Google Scholar]
  29. Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. E., Hendrickson W. A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science. 1996 Jun 14;272(5268):1606–1614. doi: 10.1126/science.272.5268.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ziegelhoffer T., Lopez-Buesa P., Craig E. A. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J Biol Chem. 1995 May 5;270(18):10412–10419. doi: 10.1074/jbc.270.18.10412. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES