Abstract
Tryptase is a serine protease that is stored at low pH in the mast cell secretory granules in complex with heparin proteoglycan. When mast cells are activated, e.g. during allergic responses, the tryptase/heparin complexes are released together with a variety of other preformed inflammatory mediators. Previous crystallization of human beta-tryptase revealed a unique tetrameric structure with all of the active sites facing a central pore that has a limited accessibility both for potential substrates as well as for protease inhibitors. In this study we examined whether human beta-tryptase, in addition, could form active monomers. Incubation of recombinant tetrameric human beta-tryptase at neutral pH and 37 degrees C, followed by gel-filtration analysis using a running buffer containing pig mucosal heparin, led to the formation of enzymically active compounds that were of a size compatible with tryptase monomers in complex with heparin. The monomers were, in contrast to tryptase in the tetrameric form, inhibited by bovine pancreatic trypsin inhibitor. Further, the monomers, but not the tetramers, degraded fibronectin. Formation of active monomers was more pronounced at pH 7.5 than at pH 6.0 and was not detected at room temperature or at high heparin/tryptase ratios. The present findings thus introduce the possibility that human beta-tryptase, after mast cell degranulation and exposure to neutral pH in the tissue, may dissociate into active monomers with properties that are distinct from the tetrameric counterpart. Possibly, some of the biological activities of human tryptase may be attributable to active tryptase in its monomeric rather than tetrameric form.
Full Text
The Full Text of this article is available as a PDF (234.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addington A. K., Johnson D. A. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers. Biochemistry. 1996 Oct 22;35(42):13511–13518. doi: 10.1021/bi960042t. [DOI] [PubMed] [Google Scholar]
- Alter S. C., Kramps J. A., Janoff A., Schwartz L. B. Interactions of human mast cell tryptase with biological protease inhibitors. Arch Biochem Biophys. 1990 Jan;276(1):26–31. doi: 10.1016/0003-9861(90)90005-j. [DOI] [PubMed] [Google Scholar]
- Clark J. M., Abraham W. M., Fishman C. E., Forteza R., Ahmed A., Cortes A., Warne R. L., Moore W. R., Tanaka R. D. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2076–2083. doi: 10.1164/ajrccm.152.6.8520778. [DOI] [PubMed] [Google Scholar]
- Forsberg E., Pejler G., Ringvall M., Lunderius C., Tomasini-Johansson B., Kusche-Gullberg M., Eriksson I., Ledin J., Hellman L., Kjellén L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature. 1999 Aug 19;400(6746):773–776. doi: 10.1038/23488. [DOI] [PubMed] [Google Scholar]
- Hallgren J., Estrada S., Karlson U., Alving K., Pejler G. Heparin antagonists are potent inhibitors of mast cell tryptase. Biochemistry. 2001 Jun 19;40(24):7342–7349. doi: 10.1021/bi001988c. [DOI] [PubMed] [Google Scholar]
- Hallgren J., Karlson U., Poorafshar M., Hellman L., Pejler G. Mechanism for activation of mouse mast cell tryptase: dependence on heparin and acidic pH for formation of active tetramers of mouse mast cell protease 6. Biochemistry. 2000 Oct 24;39(42):13068–13077. doi: 10.1021/bi000973b. [DOI] [PubMed] [Google Scholar]
- Hallgren J., Spillmann D., Pejler G. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. J Biol Chem. 2001 Aug 31;276(46):42774–42781. doi: 10.1074/jbc.M105531200. [DOI] [PubMed] [Google Scholar]
- He S., Peng Q., Walls A. F. Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol. 1997 Dec 15;159(12):6216–6225. [PubMed] [Google Scholar]
- Huang C., Friend D. S., Qiu W. T., Wong G. W., Morales G., Hunt J., Stevens R. L. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol. 1998 Feb 15;160(4):1910–1919. [PubMed] [Google Scholar]
- Lohi J., Harvima I., Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem. 1992 Dec;50(4):337–349. doi: 10.1002/jcb.240500402. [DOI] [PubMed] [Google Scholar]
- Metcalfe D. D., Baram D., Mekori Y. A. Mast cells. Physiol Rev. 1997 Oct;77(4):1033–1079. doi: 10.1152/physrev.1997.77.4.1033. [DOI] [PubMed] [Google Scholar]
- Miller Hugh R. P., Pemberton Alan D. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002 Apr;105(4):375–390. doi: 10.1046/j.1365-2567.2002.01375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molinari J. F., Scuri M., Moore W. R., Clark J., Tanaka R., Abraham W. M. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):649–653. doi: 10.1164/ajrccm.154.3.8810600. [DOI] [PubMed] [Google Scholar]
- Niles A. L., Maffitt M., Haak-Frendscho M., Wheeless C. J., Johnson D. A. Recombinant human mast cell tryptase beta: stable expression in Pichia pastoris and purification of fully active enzyme. Biotechnol Appl Biochem. 1998 Oct;28(Pt 2):125–131. [PubMed] [Google Scholar]
- Pereira P. J., Bergner A., Macedo-Ribeiro S., Huber R., Matschiner G., Fritz H., Sommerhoff C. P., Bode W. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature. 1998 Mar 19;392(6673):306–311. doi: 10.1038/32703. [DOI] [PubMed] [Google Scholar]
- Ren S., Sakai K., Schwartz L. B. Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH. J Immunol. 1998 May 1;160(9):4561–4569. [PubMed] [Google Scholar]
- Schwartz L. B., Bradford T. R., Littman B. H., Wintroub B. U. The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol. 1985 Oct;135(4):2762–2767. [PubMed] [Google Scholar]
- Schwartz L. B., Bradford T. R. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J Biol Chem. 1986 Jun 5;261(16):7372–7379. [PubMed] [Google Scholar]
- Schwartz L. B. Clinical utility of tryptase levels in systemic mastocytosis and associated hematologic disorders. Leuk Res. 2001 Jul;25(7):553–562. doi: 10.1016/s0145-2126(01)00020-0. [DOI] [PubMed] [Google Scholar]
- Schwartz L. B., Lewis R. A., Austen K. F. Tryptase from human pulmonary mast cells. Purification and characterization. J Biol Chem. 1981 Nov 25;256(22):11939–11943. [PubMed] [Google Scholar]
- Selwood T., McCaslin D. R., Schechter N. M. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Biochemistry. 1998 Sep 22;37(38):13174–13183. doi: 10.1021/bi980780c. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Hougland M. W., Johnson D. A. Human lung tryptase. Purification and characterization. J Biol Chem. 1984 Sep 10;259(17):11046–11051. [PubMed] [Google Scholar]
- Sommerhoff C. P., Bode W., Matschiner G., Bergner A., Fritz H. The human mast cell tryptase tetramer: a fascinating riddle solved by structure. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):75–89. doi: 10.1016/s0167-4838(99)00265-4. [DOI] [PubMed] [Google Scholar]
- Wright C. D., Havill A. M., Middleton S. C., Kashem M. A., Dripps D. J., Abraham W. M., Thomson D. S., Burgess L. E. Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-phenoxy]-pen tane (AMG-126737). Biochem Pharmacol. 1999 Dec 15;58(12):1989–1996. doi: 10.1016/s0006-2952(99)00304-4. [DOI] [PubMed] [Google Scholar]