Abstract
Assuming that the efficiency of the incorporation of 5-methyl-2'-deoxyisocytosine-5' triphosphate (dMiCTP) and dTTP opposite isoguanine (iG) is a measure of the proportion of the keto and enol tautomers of iG in the Thermus aquaticus DNA polymerase active centre, we studied the influence of temperature and iG-neighbouring bases in the template on base-pairing of iG. On the basis of experiments with four sequences (3'-TXT-5', 3'-GXG-5', 3'-CXC-5', 3'-CXT-5', where X=iG) at 37, 50, 65 and 80 degrees C, we found that 3'-neighbours decrease the fraction of the keto tautomer in the order C>G>or=T, whereas temperature apparently does not influence the tautomeric equilibrium of iG. The variability of the ratio of incorporation of dMiCTP versus dTTP (5-20) primarily reflects the variability of K (m) values, since V (max) values are roughly similar, which indicates that the iG.MiC and iG.T pairs fit the polymerase active centre equally well. The altering of the base-pairing of iG by sequence context is discussed in relation to tautomerism and miscoding of this oxidized adenine derivative. A key derivative for preparation oligodeoxynucleotides, O (2)-diphenylcarbamoyl- N (6)-[(dimethylamino)ethylidene]-2'-deoxyisoguanosine, is extremely labile (t (1/2)=3.5 min) in 3% trichloroacetic acid/dichloromethane, i.e. under the conditions of automated DNA synthesis, which results in low yield and length heterogeneity of templates.
Full Text
The Full Text of this article is available as a PDF (161.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aida M., Nishimura S. An ab initio molecular orbital study on the characteristics of 8-hydroxyguanine. Mutat Res. 1987 Oct;192(2):83–89. doi: 10.1016/0165-7992(87)90101-1. [DOI] [PubMed] [Google Scholar]
- Bommarito S., Peyret N., SantaLucia J., Jr Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res. 2000 May 1;28(9):1929–1934. doi: 10.1093/nar/28.9.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boosalis M. S., Petruska J., Goodman M. F. DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem. 1987 Oct 25;262(30):14689–14696. [PubMed] [Google Scholar]
- Bukowska A. M., Kuśmierek J. T. Miscoding properties of isoguanine (2-oxoadenine) studied in an AMV reverse transcriptase in vitro system. Acta Biochim Pol. 1996;43(1):247–254. [PubMed] [Google Scholar]
- Chenna A., Singer B. Large scale synthesis of p-benzoquinone-2'-deoxycytidine and p-benzoquinone-2'-deoxyadenosine adducts and their site-specific incorporation into DNA oligonucleotides. Chem Res Toxicol. 1995 Sep;8(6):865–874. doi: 10.1021/tx00048a007. [DOI] [PubMed] [Google Scholar]
- Cho B. P., Kadlubar F. F., Culp S. J., Evans F. E. 15N nuclear magnetic resonance studies on the tautomerism of 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and other C8-substituted guanine nucleosides. Chem Res Toxicol. 1990 Sep-Oct;3(5):445–452. doi: 10.1021/tx00017a010. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A., Eisenthal R. Estimation of Michaelis constant and maximum velocity from the direct linear plot. Biochim Biophys Acta. 1978 Mar 14;523(1):268–272. doi: 10.1016/0005-2744(78)90030-x. [DOI] [PubMed] [Google Scholar]
- Culp S. J., Cho B. P., Kadlubar F. F., Evans F. E. Structural and conformational analyses of 8-hydroxy-2'-deoxyguanosine. Chem Res Toxicol. 1989 Nov-Dec;2(6):416–422. doi: 10.1021/tx00012a010. [DOI] [PubMed] [Google Scholar]
- Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992 Sep;275(3-6):331–342. doi: 10.1016/0921-8734(92)90036-o. [DOI] [PubMed] [Google Scholar]
- Fuhrman F. A., Fuhrman G. J., Nachman R. J., Mosher H. S. Isoguanosine: isolation from an animal. Science. 1981 May 1;212(4494):557–558. doi: 10.1126/science.7209552. [DOI] [PubMed] [Google Scholar]
- Fujikawa K., Kamiya H., Yakushiji H., Fujii Y., Nakabeppu Y., Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem. 1999 Jun 25;274(26):18201–18205. doi: 10.1074/jbc.274.26.18201. [DOI] [PubMed] [Google Scholar]
- Goodman M. F., Creighton S., Bloom L. B., Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. 1993;28(2):83–126. doi: 10.3109/10409239309086792. [DOI] [PubMed] [Google Scholar]
- Hatahet Z., Zhou M., Reha-Krantz L. J., Morrical S. W., Wallace S. S. In search of a mutational hotspot. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8556–8561. doi: 10.1073/pnas.95.15.8556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Kamiya H., Fujikawa K., Ootsuyama Y., Murata-Kamiya N., Osaki T., Yasumoto K., Kasai H. Induction of chromosomal gene mutations in Escherichia coli by direct incorporation of oxidatively damaged nucleotides. New evaluation method for mutagenesis by damaged DNA precursors in vivo. J Biol Chem. 1998 May 1;273(18):11069–11074. doi: 10.1074/jbc.273.18.11069. [DOI] [PubMed] [Google Scholar]
- Kaminski Z. W., Domino E. F. Computer program for calculation of kinetic and pharmacologic parameters using a 'direct linear plot' derived algorithm. Comput Methods Programs Biomed. 1987 Feb;24(1):41–45. doi: 10.1016/0169-2607(87)90064-2. [DOI] [PubMed] [Google Scholar]
- Kamiya H., Kasai H. Effect of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine. FEBS Lett. 1996 Aug 5;391(1-2):113–116. doi: 10.1016/0014-5793(96)00714-4. [DOI] [PubMed] [Google Scholar]
- Kamiya H., Kasai H. Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem. 1995 Aug 18;270(33):19446–19450. doi: 10.1074/jbc.270.33.19446. [DOI] [PubMed] [Google Scholar]
- Kamiya H., Kasai H. Mutations induced by 2-hydroxyadenine on a shuttle vector during leading and lagging strand syntheses in mammalian cells. Biochemistry. 1997 Sep 16;36(37):11125–11130. doi: 10.1021/bi970871u. [DOI] [PubMed] [Google Scholar]
- Kamiya H., Ueda T., Ohgi T., Matsukage A., Kasai H. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakami J., Kamiya H., Yasuda K., Fujiki H., Kasai H., Sugimoto N. Thermodynamic stability of base pairs between 2-hydroxyadenine and incoming nucleotides as a determinant of nucleotide incorporation specificity during replication. Nucleic Acids Res. 2001 Aug 15;29(16):3289–3296. doi: 10.1093/nar/29.16.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. H., Nachman R. J., Pavelka L., Mosher H. S., Fuhrman F. A., Fuhrman G. J. Doridosine, 1-methylisoguanosine, from Anisodoris nobilis; structure, pharmacological properties and synthesis. J Nat Prod. 1981 Mar-Apr;44(2):206–214. doi: 10.1021/np50014a011. [DOI] [PubMed] [Google Scholar]
- Kouchakdjian M., Bodepudi V., Shibutani S., Eisenberg M., Johnson F., Grollman A. P., Patel D. J. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry. 1991 Feb 5;30(5):1403–1412. doi: 10.1021/bi00219a034. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. [DOI] [PubMed] [Google Scholar]
- Li Y., Waksman G. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity. Protein Sci. 2001 Jun;10(6):1225–1233. doi: 10.1110/ps.250101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutz M. J., Horlacher J., Benner S. A. Recognition of 2'-deoxyisoguanosine triphosphate by HIV-1 reverse transcriptase and mammalian cellular DNA polymerases. Bioorg Med Chem Lett. 1998 Mar 3;8(5):499–504. doi: 10.1016/s0960-894x(98)00057-2. [DOI] [PubMed] [Google Scholar]
- Mroczkowska M. M., Kuśmierek J. T. The effect of neighboring bases on miscoding properties of N2,3-ethenoguanine. Z Naturforsch C. 1993 Jan-Feb;48(1-2):63–67. doi: 10.1515/znc-1993-1-212. [DOI] [PubMed] [Google Scholar]
- Oda Y., Uesugi S., Ikehara M., Nishimura S., Kawase Y., Ishikawa H., Inoue H., Ohtsuka E. NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res. 1991 Apr 11;19(7):1407–1412. doi: 10.1093/nar/19.7.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsubo T., Nishioka K., Imaiso Y., Iwai S., Shimokawa H., Oda H., Fujiwara T., Nakabeppu Y. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 2000 Mar 15;28(6):1355–1364. doi: 10.1093/nar/28.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piccirilli J. A., Krauch T., Moroney S. E., Benner S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature. 1990 Jan 4;343(6253):33–37. doi: 10.1038/343033a0. [DOI] [PubMed] [Google Scholar]
- Reeves S. T., Beattie K. L. Base-pairing properties of N4-methoxydeoxycytidine 5'-triphosphate during DNA synthesis on natural templates, catalyzed by DNA polymerase I of Escherichia coli. Biochemistry. 1985 Apr 23;24(9):2262–2268. doi: 10.1021/bi00330a021. [DOI] [PubMed] [Google Scholar]
- Robinson H., Gao Y. G., Bauer C., Roberts C., Switzer C., Wang A. H. 2'-Deoxyisoguanosine adopts more than one tautomer to form base pairs with thymidine observed by high-resolution crystal structure analysis. Biochemistry. 1998 Aug 4;37(31):10897–10905. doi: 10.1021/bi980818l. [DOI] [PubMed] [Google Scholar]
- Seela F., Chen Y., Melenewski A., Rosemeyer H., Wei C. Synthesis and application of novel nucleoside phosphonates and phosphoramidites modified at the base moiety. Acta Biochim Pol. 1996;43(1):45–52. [PubMed] [Google Scholar]
- Seela F., He Y., Reuter H., Heithoff E. M. 2'-Deoxy-5-methylisocytidine. Acta Crystallogr C. 2000 Aug;56(Pt 8):989–991. doi: 10.1107/s0108270100006247. [DOI] [PubMed] [Google Scholar]
- Sepiol J., Kazimierczuk Z., Shugar D. Tautomerism of isoguanosine and solvent-induced keto-enol equilibrium. Z Naturforsch C. 1976 Jul-Aug;31(7-8):361–370. doi: 10.1515/znc-1976-7-803. [DOI] [PubMed] [Google Scholar]
- Switzer C. Y., Moroney S. E., Benner S. A. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry. 1993 Oct 5;32(39):10489–10496. doi: 10.1021/bi00090a027. [DOI] [PubMed] [Google Scholar]
