Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):519–528. doi: 10.1042/BJ20020733

Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5',5"'-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations.

Stephen W Ingram 1, Stephen T Safrany 1, Larry D Barnes 1
PMCID: PMC1223115  PMID: 12387729

Abstract

Schizosaccharomyces pombe Aps1 is an enzyme that degrades both diadenosine oligophosphates (Ap(n)A, n =5 or 6) and diphosphoinositol polyphosphates [diphosphoinositol pentakisphosphate (PP-InsP(5)) and bisdiphosphoinositol tetrakisphosphate ([PP](2)-InsP(4))] in vitro. The in vivo substrates of Aps1 are unknown. We report here the identification of Ap(5)A, PP-InsP(5), [PP](2)-InsP(4) and a novel diphosphoinositol polyphosphate ([PP](x)-InsP(x)) in S. pombe using HPLC methods. Ap(5)A was present at 0.06 pmol/mg of protein (approx. 4 nM). PP-InsP(5), [PP](x)-InsP(x) and [PP](2)-InsP(4) were present at 15 pmol/mg (approx. 1.1 microM), 15 pmol/mg (approx. 1.1 microM) and 30 pmol/mg (approx. 2.2 microM) respectively, while the intracellular concentration of InsP(6) was 0.5 nmol/mg of protein (approx. 36 microM). Disruption of aps1 resulted in a 52% decrease in Ap(6)A hydrolase activity in vitro, no detectable change in the intracellular Ap(5)A concentration, and 3-fold increased intracellular concentrations of PP-Ins P(5) and [PP](x)-InsP(x). Disruption of aps1 resulted in no detectable change in morphology or growth rate in minimal or rich media at 30 degrees C. Overexpression of aps1 via two different plasmids that resulted in 60% and 6-fold increases above wild-type enzymic activity in vitro caused no detectable changes in the intracellular concentrations of [PP](2)-InsP(4), [PP](x)-InsP(x) or PP-InsP(5), but paradoxical increases of approx. 2.5- and 55-fold respectively in the intracellular Ap(5)A concentration. Overexpression of aps1 also resulted in a reduced growth rate and in morphological changes, including swollen, rounded and multiseptate cells. No phenotypic changes or changes in intracellular Ap(5)A occurred upon overexpression of aps1 E93Q, which encodes a mutated Aps1 lacking significant enzymic activity. We conclude that Aps1 degrades PP-InsP(5) and [PP](x)-InsP(x) in vivo.

Full Text

The Full Text of this article is available as a PDF (227.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali N., Duden R., Bembenek M. E., Shears S. B. The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochem J. 1995 Aug 15;310(Pt 1):279–284. doi: 10.1042/bj3100279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apolinario E., Nocero M., Jin M., Hoffman C. S. Cloning and manipulation of the Schizosaccharomyces pombe his7+ gene as a new selectable marker for molecular genetic studies. Curr Genet. 1993 Dec;24(6):491–495. doi: 10.1007/BF00351711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry L. D., Feoktistova A., Wright M. D., Gould K. L. The schizosaccharomyces pombe dim1(+) gene interacts with the anaphase-promoting complex or cyclosome (APC/C) component lid1(+) and is required for APC/C function. Mol Cell Biol. 1999 Apr;19(4):2535–2546. doi: 10.1128/mcb.19.4.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  5. Dubois Evelyne, Scherens Bart, Vierendeels Fabienne, Ho Melisa M. W., Messenguy Francine, Shears Stephen B. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem. 2002 Apr 15;277(26):23755–23763. doi: 10.1074/jbc.M202206200. [DOI] [PubMed] [Google Scholar]
  6. Feldhau P., Fröhlich T., Goody R. S., Isakov M., Schirmer R. H. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur J Biochem. 1975 Sep 1;57(1):197–204. doi: 10.1111/j.1432-1033.1975.tb02291.x. [DOI] [PubMed] [Google Scholar]
  7. Fleischer B., Xie J., Mayrleitner M., Shears S. B., Palmer D. J., Fleischer S. Golgi coatomer binds, and forms K(+)-selective channels gated by, inositol polyphosphates. J Biol Chem. 1994 Jul 8;269(27):17826–17832. [PubMed] [Google Scholar]
  8. Forsburg S. L. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 1993 Jun 25;21(12):2955–2956. doi: 10.1093/nar/21.12.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  10. Ingram S. W., Barnes L. D. Disruption and overexpression of the Schizosaccharomyces pombe aph1 gene and the effects on intracellular diadenosine 5',5'''-P1, P4-tetraphosphate (Ap4A), ATP and ADP concentrations. Biochem J. 2000 Sep 15;350(Pt 3):663–669. [PMC free article] [PubMed] [Google Scholar]
  11. Ingram S. W., Stratemann S. A., Barnes L. D. Schizosaccharomyces pombe Aps1, a diadenosine 5',5' "-P1, P6-hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry. 1999 Mar 23;38(12):3649–3655. doi: 10.1021/bi982951j. [DOI] [PubMed] [Google Scholar]
  12. Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
  13. Ishiguro J., Saitou A., Durán A., Ribas J. C. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J Bacteriol. 1997 Dec;179(24):7653–7662. doi: 10.1128/jb.179.24.7653-7662.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ives E. B., Nichols J., Wente S. R., York J. D. Biochemical and functional characterization of inositol 1,3,4,5, 6-pentakisphosphate 2-kinases. J Biol Chem. 2000 Nov 24;275(47):36575–36583. doi: 10.1074/jbc.M007586200. [DOI] [PubMed] [Google Scholar]
  15. Jakubowski H. Sporulation of the yeast Saccharomyces cerevisiae is accompanied by synthesis of adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2378–2382. doi: 10.1073/pnas.83.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jobling M. G., Holmes R. K. Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res. 1990 Sep 11;18(17):5315–5316. doi: 10.1093/nar/18.17.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lienhard G. E., Secemski I. I. P 1 ,P 5 -Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem. 1973 Feb 10;248(3):1121–1123. [PubMed] [Google Scholar]
  19. Lin J., Abeygunawardana C., Frick D. N., Bessman M. J., Mildvan A. S. The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. Biochemistry. 1996 May 28;35(21):6715–6726. doi: 10.1021/bi953071x. [DOI] [PubMed] [Google Scholar]
  20. Luo Hongbo R., Saiardi Adolfo, Yu Hongbo, Nagata Eiichiro, Ye Keqiang, Snyder Solomon H. Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry. 2002 Feb 26;41(8):2509–2515. doi: 10.1021/bi0118153. [DOI] [PubMed] [Google Scholar]
  21. McLennan A. G. The MutT motif family of nucleotide phosphohydrolases in man and human pathogens (review). Int J Mol Med. 1999 Jul;4(1):79–89. doi: 10.3892/ijmm.4.1.79. [DOI] [PubMed] [Google Scholar]
  22. Miras-Portugal M. T., Gualix J., Pintor J. The neurotransmitter role of diadenosine polyphosphates. FEBS Lett. 1998 Jun 23;430(1-2):78–82. doi: 10.1016/s0014-5793(98)00560-2. [DOI] [PubMed] [Google Scholar]
  23. Ng K. E., Orgel L. E. The action of a water-soluble carbodiimide on adenosine-5'-polyphosphates. Nucleic Acids Res. 1987 Apr 24;15(8):3573–3580. doi: 10.1093/nar/15.8.3573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Odom A. R., Stahlberg A., Wente S. R., York J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science. 2000 Mar 17;287(5460):2026–2029. doi: 10.1126/science.287.5460.2026. [DOI] [PubMed] [Google Scholar]
  25. Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990 Nov 25;18(22):6485–6489. doi: 10.1093/nar/18.22.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ongusaha P. P., Hughes P. J., Davey J., Michell R. H. Inositol hexakisphosphate in Schizosaccharomyces pombe: synthesis from Ins(1,4,5)P3 and osmotic regulation. Biochem J. 1998 Nov 1;335(Pt 3):671–679. doi: 10.1042/bj3350671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pintor J., Rotllán P., Torres M., Miras-Portugal M. T. Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: granular storage and secretagogue-induced release. Anal Biochem. 1992 Feb 1;200(2):296–300. doi: 10.1016/0003-2697(92)90469-n. [DOI] [PubMed] [Google Scholar]
  28. Rodriguez del Castillo A., Torres M., Delicado E. G., Miras-Portugal M. T. Subcellular distribution studies of diadenosine polyphosphates--Ap4A and Ap5A--in bovine adrenal medulla: presence in chromaffin granules. J Neurochem. 1988 Dec;51(6):1696–1703. doi: 10.1111/j.1471-4159.1988.tb01147.x. [DOI] [PubMed] [Google Scholar]
  29. Safrany S. T., Caffrey J. J., Yang X., Bembenek M. E., Moyer M. B., Burkhart W. A., Shears S. B. A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 1998 Nov 16;17(22):6599–6607. doi: 10.1093/emboj/17.22.6599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Safrany S. T., Caffrey J. J., Yang X., Shears S. B. Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol Chem. 1999 Jul-Aug;380(7-8):945–951. doi: 10.1515/BC.1999.117. [DOI] [PubMed] [Google Scholar]
  31. Safrany S. T., Ingram S. W., Cartwright J. L., Falck J. R., McLennan A. G., Barnes L. D., Shears S. B. The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem. 1999 Jul 30;274(31):21735–21740. doi: 10.1074/jbc.274.31.21735. [DOI] [PubMed] [Google Scholar]
  32. Safrany S. T., Shears S. B. Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by beta2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO J. 1998 Mar 16;17(6):1710–1716. doi: 10.1093/emboj/17.6.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saiardi A., Caffrey J. J., Snyder S. H., Shears S. B. Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 2000 Feb 18;468(1):28–32. doi: 10.1016/s0014-5793(00)01194-7. [DOI] [PubMed] [Google Scholar]
  34. Saiardi A., Caffrey J. J., Snyder S. H., Shears S. B. The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem. 2000 Aug 11;275(32):24686–24692. doi: 10.1074/jbc.M002750200. [DOI] [PubMed] [Google Scholar]
  35. Saiardi A., Erdjument-Bromage H., Snowman A. M., Tempst P., Snyder S. H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol. 1999 Nov 18;9(22):1323–1326. doi: 10.1016/s0960-9822(00)80055-x. [DOI] [PubMed] [Google Scholar]
  36. Schlüter H., Offers E., Brüggemann G., van der Giet M., Tepel M., Nordhoff E., Karas M., Spieker C., Witzel H., Zidek W. Diadenosine phosphates and the physiological control of blood pressure. Nature. 1994 Jan 13;367(6459):186–188. doi: 10.1038/367186a0. [DOI] [PubMed] [Google Scholar]
  37. Shears S. B., Ali N., Craxton A., Bembenek M. E. Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J Biol Chem. 1995 May 5;270(18):10489–10497. doi: 10.1074/jbc.270.18.10489. [DOI] [PubMed] [Google Scholar]
  38. Shears S. B. The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):49–67. doi: 10.1016/s0005-2760(98)00131-3. [DOI] [PubMed] [Google Scholar]
  39. Stephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A., Jackson T. R., Hawkins P. T., Mayr G. W. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993 Feb 25;268(6):4009–4015. [PubMed] [Google Scholar]
  40. Voglmaier S. M., Bembenek M. E., Kaplin A. I., Dormán G., Olszewski J. D., Prestwich G. D., Snyder S. H. Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4305–4310. doi: 10.1073/pnas.93.9.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu S., Lu Q., Kriz A. L. Multiple-sandwich, one-step hybridization of northern and Southern blots. Biotechniques. 1995 Apr;18(4):585–586. [PubMed] [Google Scholar]
  42. Yamashita Y. M., Nakaseko Y., Kumada K., Nakagawa T., Yanagida M. Fission yeast APC/cyclosome subunits, Cut20/Apc4 and Cut23/Apc8, in regulating metaphase-anaphase progression and cellular stress responses. Genes Cells. 1999 Aug;4(8):445–463. doi: 10.1046/j.1365-2443.1999.00274.x. [DOI] [PubMed] [Google Scholar]
  43. Ye W., Ali N., Bembenek M. E., Shears S. B., Lafer E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem. 1995 Jan 27;270(4):1564–1568. [PubMed] [Google Scholar]
  44. York J. D., Odom A. R., Murphy R., Ives E. B., Wente S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 1999 Jul 2;285(5424):96–100. doi: 10.1126/science.285.5424.96. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES