Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):469–476. doi: 10.1042/BJ20021160

Identification of amino acid residues, essential for maintaining the tetrameric structure of sheep liver cytosolic serine hydroxymethyltransferase, by targeted mutagenesis.

Venkatakrishna Rao Jala 1, Naropantul Appaji Rao 1, Handanahal Subbarao Savithri 1
PMCID: PMC1223116  PMID: 12392447

Abstract

Serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyses the transfer of the hydroxymethyl group from serine to tetrahydrofolate to yield glycine and N (5), N (10)-methylenetetrahydrofolate. An analysis of the known SHMT sequences indicated that several amino acid residues were conserved. In this paper, we report the identification of the amino acid residues essential for maintaining the oligomeric structure of sheep liver cytosolic recombinant SHMT (scSHMT) through intra- and inter-subunit interactions and by stabilizing the binding of PLP at the active site. The mutation of Lys-71, Arg-80 and Asp-89, the residues involved in intra-subunit ionic interactions, disturbed the oligomeric structure and caused a loss of catalytic activity. Mutation of Trp-110 to Phe was without effect, while its mutation to Ala resulted in the enzyme being present in the insoluble fraction. These results suggested that Trp-110 located in a cluster of hydrophobic residues was essential for proper folding of the enzyme. Arg-98 and His-304, residues involved in the inter-subunit interactions, were essential for maintaining the tetrameric structure. Mutation of Tyr-72, Asp-227 and His-356 at the active site which interact with PLP resulted in the loss of PLP, and hence loss of tetrameric structure. Mutation of Cys-203, located away from the active site, weakened PLP binding indirectly. The results demonstrate that in addition to residues involved in inter-subunit interactions, those involved in PLP binding and intra-subunit interactions also affect the oligomeric structure of scSHMT.

Full Text

The Full Text of this article is available as a PDF (187.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLAKLEY R. L. The interconversion of serine and glycine: participation of pyridoxal phosphate. Biochem J. 1955 Oct;61(2):315–323. doi: 10.1042/bj0610315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Datta A. K. Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction. Nucleic Acids Res. 1995 Nov 11;23(21):4530–4531. doi: 10.1093/nar/23.21.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gavilanes F., Peterson D., Schirch L. Methyl methanethiosulfonate as an active site probe of serine hydroxymethyltransferase. J Biol Chem. 1982 Oct 10;257(19):11431–11436. [PubMed] [Google Scholar]
  4. Grishin N. V., Phillips M. A., Goldsmith E. J. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 1995 Jul;4(7):1291–1304. doi: 10.1002/pro.5560040705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jagath-Reddy J., Ganesan K., Savithri H. S., Datta A., Rao N. A. cDNA cloning, overexpression in Escherichia coli, purification and characterization of sheep liver cytosolic serine hydroxymethyltransferase. Eur J Biochem. 1995 Jun 1;230(2):533–537. doi: 10.1111/j.1432-1033.1995.0533h.x. [DOI] [PubMed] [Google Scholar]
  6. Jagath J. R., Sharma B., Bhaskar B., Datta A., Rao N. A., Savithri H. S. Importance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase. Eur J Biochem. 1997 Jul 1;247(1):372–379. doi: 10.1111/j.1432-1033.1997.00372.x. [DOI] [PubMed] [Google Scholar]
  7. Jagath J. R., Sharma B., Rao N. A., Savithri H. S. The role of His-134, -147, and -150 residues in subunit assembly, cofactor binding, and catalysis of sheep liver cytosolic serine hydroxymethyltransferase. J Biol Chem. 1997 Sep 26;272(39):24355–24362. doi: 10.1074/jbc.272.39.24355. [DOI] [PubMed] [Google Scholar]
  8. Krishna Rao J. V., Jagath J. R., Sharma B., Appaji Rao N., Savithri H. S. Asp-89: a critical residue in maintaining the oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase. Biochem J. 1999 Oct 1;343(Pt 1):257–263. [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Rao J. V., Prakash V., Rao N. A., Savithri H. S. The role of Glu74 and Tyr82 in the reaction catalyzed by sheep liver cytosolic serine hydroxymethyltransferase. Eur J Biochem. 2000 Oct;267(19):5967–5976. doi: 10.1046/j.1432-1327.2000.01667.x. [DOI] [PubMed] [Google Scholar]
  11. Rao N. A., Talwar R., Savithri H. S. Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase--a potential target for cancer chemotherapy. Int J Biochem Cell Biol. 2000 Apr;32(4):405–416. doi: 10.1016/s1357-2725(99)00126-0. [DOI] [PubMed] [Google Scholar]
  12. Renwick S. B., Snell K., Baumann U. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure. 1998 Sep 15;6(9):1105–1116. doi: 10.1016/s0969-2126(98)00112-9. [DOI] [PubMed] [Google Scholar]
  13. SCHIRCH L., JENKINS W. T. SERINE TRANSHYDROXYMETHYLASE. TRANSAMINATION OF D-ALANINE. J Biol Chem. 1964 Nov;239:3797–3800. [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scarsdale J. N., Kazanina G., Radaev S., Schirch V., Wright H. T. Crystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 A resolution: mechanistic implications. Biochemistry. 1999 Jun 29;38(26):8347–8358. doi: 10.1021/bi9904151. [DOI] [PubMed] [Google Scholar]
  16. Scarsdale J. N., Radaev S., Kazanina G., Schirch V., Wright H. T. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol. 2000 Feb 11;296(1):155–168. doi: 10.1006/jmbi.1999.3453. [DOI] [PubMed] [Google Scholar]
  17. Schirch D., Delle Fratte S., Iurescia S., Angelaccio S., Contestabile R., Bossa F., Schirch V. Function of the active-site lysine in Escherichia coli serine hydroxymethyltransferase. J Biol Chem. 1993 Nov 5;268(31):23132–23138. [PubMed] [Google Scholar]
  18. Schirch L. Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol. 1982;53:83–112. doi: 10.1002/9780470122983.ch3. [DOI] [PubMed] [Google Scholar]
  19. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  20. Szebenyi D. M., Liu X., Kriksunov I. A., Stover P. J., Thiel D. J. Structure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers. Biochemistry. 2000 Nov 7;39(44):13313–13323. doi: 10.1021/bi000635a. [DOI] [PubMed] [Google Scholar]
  21. Talwar R., Jagath J. R., Datta A., Prakash V., Savithri H. S., Rao N. A. The role of lysine-256 in the structure and function of sheep liver recombinant serine hydroxymethyltransferase. Acta Biochim Pol. 1997;44(4):679–688. [PubMed] [Google Scholar]
  22. Talwar R., Jagath J. R., Rao N. A., Savithri H. S. His230 of serine hydroxymethyltransferase facilitates the proton abstraction step in catalysis. Eur J Biochem. 2000 Mar;267(5):1441–1446. doi: 10.1046/j.1432-1327.2000.01142.x. [DOI] [PubMed] [Google Scholar]
  23. Trivedi Vishal, Gupta Amrita, Jala Venkatakrishna R., Saravanan P., Rao G. S. Jagannatha, Rao N. Appaji, Savithri Handanahal S., Subramanya Hosahalli S. Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism. J Biol Chem. 2002 Feb 27;277(19):17161–17169. doi: 10.1074/jbc.M111976200. [DOI] [PubMed] [Google Scholar]
  24. Usha R., Savithri H. S., Rao N. A. The primary structure of sheep liver cytosolic serine hydroxymethyltransferase and an analysis of the evolutionary relationships among serine hydroxymethyltransferases. Biochim Biophys Acta. 1994 Jan 11;1204(1):75–83. doi: 10.1016/0167-4838(94)90035-3. [DOI] [PubMed] [Google Scholar]
  25. Vijayalakshmi D., Rao N. A. Identification of amino acid residues at the active site of human liver serine hydroxymethyltransferase. Biochem Int. 1989 Sep;19(3):625–632. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES