Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):651–657. doi: 10.1042/BJ20020854

An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B.

Liu Yang 1, Qi Mei 1, Anna Zielinska-Kwiatkowska 1, Yoshito Matsui 1, Michael L Blackburn 1, Daniel Benedetti 1, Anton A Krumm 1, Gerald J Taborsky Jr 1, Howard A Chansky 1
PMCID: PMC1223118  PMID: 12398767

Abstract

Covalent modifications of histone tails play important roles in gene transcription and silencing. We recently identified an ERG ( ets -related gene)-associated protein with a SET (suppressor of variegation, enhancer of zest and trithorax) domain (ESET) that was found to have the activity of a histone H3-specific methyltransferase. In the present study, we investigated the interaction of ESET with other chromatin remodelling factors. We show that ESET histone methyltransferase associates with histone deacetylase 1 (HDAC1) and HDAC2, and that ESET also interacts with the transcription co-repressors mSin3A and mSin3B. Deletion analysis of ESET reveals that an N-terminal region containing a tudor domain is responsible for interaction with mSin3A/B and association with HDAC1/2, and that truncation of ESET enhances its binding to mSin3. When bound to a promoter, ESET represses the transcription of a downstream luciferase reporter gene. This repression by ESET is independent of its histone methyltransferase activity, but correlates with its binding to the mSin3 co-repressors. In addition, the repression can be partially reversed by treatment with the HDAC inhibitor trichostatin A. Taken together, these data suggest that ESET histone methyltransferase can form a large, multi-protein complex(es) with mSin3A/B co-repressors and HDAC1/2 that participates in multiple pathways of transcriptional repression.

Full Text

The Full Text of this article is available as a PDF (243.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alland L., Muhle R., Hou H., Jr, Potes J., Chin L., Schreiber-Agus N., DePinho R. A. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997 May 1;387(6628):49–55. doi: 10.1038/387049a0. [DOI] [PubMed] [Google Scholar]
  2. Alland Leila, David Gregory, Shen-Li Hong, Potes Jason, Muhle Rebecca, Lee Hye-Chun, Hou Harry, Jr, Chen Ken, DePinho Ronald A. Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol. 2002 Apr;22(8):2743–2750. doi: 10.1128/MCB.22.8.2743-2750.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayer D. E., Lawrence Q. A., Eisenman R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995 Mar 10;80(5):767–776. doi: 10.1016/0092-8674(95)90355-0. [DOI] [PubMed] [Google Scholar]
  4. Berger S. L. An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene. 2001 May 28;20(24):3007–3013. doi: 10.1038/sj.onc.1204324. [DOI] [PubMed] [Google Scholar]
  5. Bird A. Molecular biology. Methylation talk between histones and DNA. Science. 2001 Dec 7;294(5549):2113–2115. doi: 10.1126/science.1066726. [DOI] [PubMed] [Google Scholar]
  6. Bühler D., Raker V., Lührmann R., Fischer U. Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet. 1999 Dec;8(13):2351–2357. doi: 10.1093/hmg/8.13.2351. [DOI] [PubMed] [Google Scholar]
  7. Czermin B., Schotta G., Hülsmann B. B., Brehm A., Becker P. B., Reuter G., Imhof A. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2001 Sep 24;2(10):915–919. doi: 10.1093/embo-reports/kve210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Firestein R., Cui X., Huie P., Cleary M. L. Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol. 2000 Jul;20(13):4900–4909. doi: 10.1128/mcb.20.13.4900-4909.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer U., Liu Q., Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell. 1997 Sep 19;90(6):1023–1029. doi: 10.1016/s0092-8674(00)80368-2. [DOI] [PubMed] [Google Scholar]
  10. Galasinski Scott C., Resing Katheryn A., Goodrich James A., Ahn Natalie G. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem. 2002 Mar 27;277(22):19618–19626. doi: 10.1074/jbc.M201174200. [DOI] [PubMed] [Google Scholar]
  11. Golumbeski G. S., Bardsley A., Tax F., Boswell R. E. tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis. Genes Dev. 1991 Nov;5(11):2060–2070. doi: 10.1101/gad.5.11.2060. [DOI] [PubMed] [Google Scholar]
  12. Hassig C. A., Fleischer T. C., Billin A. N., Schreiber S. L., Ayer D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997 May 2;89(3):341–347. doi: 10.1016/s0092-8674(00)80214-7. [DOI] [PubMed] [Google Scholar]
  13. Heard E., Rougeulle C., Arnaud D., Avner P., Allis C. D., Spector D. L. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell. 2001 Dec 14;107(6):727–738. doi: 10.1016/s0092-8674(01)00598-0. [DOI] [PubMed] [Google Scholar]
  14. Heinzel T., Lavinsky R. M., Mullen T. M., Söderstrom M., Laherty C. D., Torchia J., Yang W. M., Brard G., Ngo S. D., Davie J. R. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997 May 1;387(6628):43–48. doi: 10.1038/387043a0. [DOI] [PubMed] [Google Scholar]
  15. Jason Laure J. M., Moore Susan C., Lewis John D., Lindsey George, Ausió Juan. Histone ubiquitination: a tagging tail unfolds? Bioessays. 2002 Feb;24(2):166–174. doi: 10.1002/bies.10038. [DOI] [PubMed] [Google Scholar]
  16. Jones P. L., Veenstra G. J., Wade P. A., Vermaak D., Kass S. U., Landsberger N., Strouboulis J., Wolffe A. P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998 Jun;19(2):187–191. doi: 10.1038/561. [DOI] [PubMed] [Google Scholar]
  17. Laherty C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., Eisenman R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell. 1997 May 2;89(3):349–356. doi: 10.1016/s0092-8674(00)80215-9. [DOI] [PubMed] [Google Scholar]
  18. Lefebvre S., Bürglen L., Frézal J., Munnich A., Melki J. The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet. 1998;7(10):1531–1536. doi: 10.1093/hmg/7.10.1531. [DOI] [PubMed] [Google Scholar]
  19. Nagy L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., Evans R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997 May 2;89(3):373–380. doi: 10.1016/s0092-8674(00)80218-4. [DOI] [PubMed] [Google Scholar]
  20. Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
  21. Nishioka Kenichi, Chuikov Sergei, Sarma Kavitha, Erdjument-Bromage Hediye, Allis C. David, Tempst Paul, Reinberg Danny. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 2002 Feb 15;16(4):479–489. doi: 10.1101/gad.967202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orphanides George, Reinberg Danny. A unified theory of gene expression. Cell. 2002 Feb 22;108(4):439–451. doi: 10.1016/s0092-8674(02)00655-4. [DOI] [PubMed] [Google Scholar]
  23. Ponting C. P. Tudor domains in proteins that interact with RNA. Trends Biochem Sci. 1997 Feb;22(2):51–52. doi: 10.1016/s0968-0004(96)30049-2. [DOI] [PubMed] [Google Scholar]
  24. Rea S., Eisenhaber F., O'Carroll D., Strahl B. D., Sun Z. W., Schmid M., Opravil S., Mechtler K., Ponting C. P., Allis C. D. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000 Aug 10;406(6796):593–599. doi: 10.1038/35020506. [DOI] [PubMed] [Google Scholar]
  25. Richards Eric J., Elgin Sarah C. R. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell. 2002 Feb 22;108(4):489–500. doi: 10.1016/s0092-8674(02)00644-x. [DOI] [PubMed] [Google Scholar]
  26. Robertson K. D., Ait-Si-Ali S., Yokochi T., Wade P. A., Jones P. L., Wolffe A. P. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000 Jul;25(3):338–342. doi: 10.1038/77124. [DOI] [PubMed] [Google Scholar]
  27. Schultz David C., Ayyanathan Kasirajan, Negorev Dmitri, Maul Gerd G., Rauscher Frank J., 3rd SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002 Apr 15;16(8):919–932. doi: 10.1101/gad.973302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000 Jan 6;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
  29. Strahl Brian D., Grant Patrick A., Briggs Scott D., Sun Zu-Wen, Bone James R., Caldwell Jennifer A., Mollah Sahana, Cook Richard G., Shabanowitz Jeffrey, Hunt Donald F. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol. 2002 Mar;22(5):1298–1306. doi: 10.1128/mcb.22.5.1298-1306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strelkov Ileana S., Davie James R. Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts. Cancer Res. 2002 Jan 1;62(1):75–78. [PubMed] [Google Scholar]
  31. Tachibana M., Sugimoto K., Fukushima T., Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001 Apr 20;276(27):25309–25317. doi: 10.1074/jbc.M101914200. [DOI] [PubMed] [Google Scholar]
  32. Tachibana Makoto, Sugimoto Kenji, Nozaki Masami, Ueda Jun, Ohta Tsutomu, Ohki Misao, Fukuda Mikiko, Takeda Naoki, Niida Hiroyuki, Kato Hiroyuki. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002 Jul 15;16(14):1779–1791. doi: 10.1101/gad.989402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Terns M. P., Terns R. M. Macromolecular complexes: SMN--the master assembler. Curr Biol. 2001 Oct 30;11(21):R862–R864. doi: 10.1016/s0960-9822(01)00517-6. [DOI] [PubMed] [Google Scholar]
  34. Tsai S., Bartelmez S., Sitnicka E., Collins S. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev. 1994 Dec 1;8(23):2831–2841. doi: 10.1101/gad.8.23.2831. [DOI] [PubMed] [Google Scholar]
  35. Tschiersch B., Hofmann A., Krauss V., Dorn R., Korge G., Reuter G. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 1994 Aug 15;13(16):3822–3831. doi: 10.1002/j.1460-2075.1994.tb06693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Urnov F. D., Wolffe A. P. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene. 2001 May 28;20(24):2991–3006. doi: 10.1038/sj.onc.1204323. [DOI] [PubMed] [Google Scholar]
  37. Vaute Olivier, Nicolas Estelle, Vandel Laurence, Trouche Didier. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 2002 Jan 15;30(2):475–481. doi: 10.1093/nar/30.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang H., Cao R., Xia L., Erdjument-Bromage H., Borchers C., Tempst P., Zhang Y. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell. 2001 Dec;8(6):1207–1217. doi: 10.1016/s1097-2765(01)00405-1. [DOI] [PubMed] [Google Scholar]
  39. Yang L., Embree L. J., Hickstein D. D. TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol. 2000 May;20(10):3345–3354. doi: 10.1128/mcb.20.10.3345-3354.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang Liu, Xia Li, Wu Daniel Y., Wang Hengbin, Chansky Howard A., Schubach William H., Hickstein Dennis D., Zhang Yi. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene. 2002 Jan 3;21(1):148–152. doi: 10.1038/sj.onc.1204998. [DOI] [PubMed] [Google Scholar]
  41. You A., Tong J. K., Grozinger C. M., Schreiber S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1454–1458. doi: 10.1073/pnas.98.4.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang H. S., Gavin M., Dahiya A., Postigo A. A., Ma D., Luo R. X., Harbour J. W., Dean D. C. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000 Mar 31;101(1):79–89. doi: 10.1016/S0092-8674(00)80625-X. [DOI] [PubMed] [Google Scholar]
  43. Zhang Y., Iratni R., Erdjument-Bromage H., Tempst P., Reinberg D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 1997 May 2;89(3):357–364. doi: 10.1016/s0092-8674(00)80216-0. [DOI] [PubMed] [Google Scholar]
  44. Zhang Y., Ng H. H., Erdjument-Bromage H., Tempst P., Bird A., Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999 Aug 1;13(15):1924–1935. doi: 10.1101/gad.13.15.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES