Abstract
We have described previously a complex E-box enhancer (-147) of the vasopressin promoter in small-cell lung cancer (SCLC) extracts [Coulson, Fiskerstrand, Woll and Quinn, (1999) Biochem. J. 344, 961-970]. Upstream stimulatory factor (USF) heterodimers were one of the complexes binding to this site in vitro. We now report that USF overexpression in non-SCLC (NSCLC) cells can functionally activate vasopressin promoter-driven reporters that are otherwise inactive in this type of lung cancer cell. Site-directed mutagenesis and electrophoretic mobility-shift analysis demonstrate that although the -147 E-box contributes, none of the previously predicted E-boxes (-147, -135, -34) wholly account for this USF-mediated activation in NSCLC. 5' Deletion showed the key promoter region as -52 to +42; however, USF-2 binding was not reliant on the -34 E-box, but on a novel adjacent CACGGG non-canonical E-box at -42 (motif E). This mediated USF binding in both SCLC and USF-2-transfected NSCLC cells. Mutation of motif E or the non-canonical TATA box abolished activity, implying both are required for transcriptional initiation on overexpression of USF-2. Co-transfected dominant negative USF confirmed that binding was required through motif E for function, but that the classical activation domain of USF was not essential. USF-2 bound motif E with 10-fold lower affinity than the -147 E-box. In NSCLC, endogenous USF-2 expression is low, and this basal level appears to be insufficient to activate transcription of arginine vasopressin (AVP). In summary, we have demonstrated a novel mechanism for USF activation, which contributes to differential vasopressin expression in lung cancer.
Full Text
The Full Text of this article is available as a PDF (454.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acampora D., Postiglione M. P., Avantaggiato V., Di Bonito M., Vaccarino F. M., Michaud J., Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev. 1999 Nov 1;13(21):2787–2800. doi: 10.1101/gad.13.21.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed S. I., Thompson J., Coulson J. M., Woll P. J. Studies on the expression of endothelin, its receptor subtypes, and converting enzymes in lung cancer and in human bronchial epithelium. Am J Respir Cell Mol Biol. 2000 Apr;22(4):422–431. doi: 10.1165/ajrcmb.22.4.3795. [DOI] [PubMed] [Google Scholar]
- Ball D. W., Compton D., Nelkin B. D., Baylin S. B., de Bustros A. Human calcitonin gene regulation by helix-loop-helix recognition sequences. Nucleic Acids Res. 1992 Jan 11;20(1):117–123. doi: 10.1093/nar/20.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballas N., Battaglioli E., Atouf F., Andres M. E., Chenoweth J., Anderson M. E., Burger C., Moniwa M., Davie J. R., Bowers W. J. Regulation of neuronal traits by a novel transcriptional complex. Neuron. 2001 Aug 16;31(3):353–365. doi: 10.1016/s0896-6273(01)00371-3. [DOI] [PubMed] [Google Scholar]
- Breen G. A., Jordan E. M. Transcriptional activation of the F(1)F(0) ATP synthase alpha-subunit initiator element by USF2 is mediated by p300. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):169–176. doi: 10.1016/s0304-4165(99)00061-6. [DOI] [PubMed] [Google Scholar]
- Burbach J. P., Luckman S. M., Murphy D., Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001 Jul;81(3):1197–1267. doi: 10.1152/physrev.2001.81.3.1197. [DOI] [PubMed] [Google Scholar]
- Chen H., Biel M. A., Borges M. W., Thiagalingam A., Nelkin B. D., Baylin S. B., Ball D. W. Tissue-specific expression of human achaete-scute homologue-1 in neuroendocrine tumors: transcriptional regulation by dual inhibitory regions. Cell Growth Differ. 1997 Jun;8(6):677–686. [PubMed] [Google Scholar]
- Chen Y. H., Layne M. D., Watanabe M., Yet S. F., Perrella M. A. Upstream stimulatory factors regulate aortic preferentially expressed gene-1 expression in vascular smooth muscle cells. J Biol Chem. 2001 Oct 17;276(50):47658–47663. doi: 10.1074/jbc.M108678200. [DOI] [PubMed] [Google Scholar]
- Cheung E., Mayr P., Coda-Zabetta F., Woodman P. G., Boam D. S. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation. Biochem J. 1999 Nov 15;344(Pt 1):145–152. [PMC free article] [PubMed] [Google Scholar]
- Coulson J. M., Edgson J. L., Woll P. J., Quinn J. P. A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res. 2000 Apr 1;60(7):1840–1844. [PubMed] [Google Scholar]
- Coulson J. M., Fiskerstrand C. E., Woll P. J., Quinn J. P. Arginine vasopressin promoter regulation is mediated by a neuron-restrictive silencer element in small cell lung cancer. Cancer Res. 1999 Oct 15;59(20):5123–5127. [PubMed] [Google Scholar]
- Coulson J. M., Fiskerstrand C. E., Woll P. J., Quinn J. P. E-box motifs within the human vasopressin gene promoter contribute to a major enhancer in small-cell lung cancer. Biochem J. 1999 Dec 15;344(Pt 3):961–970. [PMC free article] [PubMed] [Google Scholar]
- Coulson J. M. Positive and negative regulators of the vasopressin gene promoter in small cell lung cancer. Prog Brain Res. 2002;139:329–343. doi: 10.1016/s0079-6123(02)39028-9. [DOI] [PubMed] [Google Scholar]
- Coulson J. M., Stanley J., Woll P. J. Tumour-specific arginine vasopressin promoter activation in small-cell lung cancer. Br J Cancer. 1999 Aug;80(12):1935–1944. doi: 10.1038/sj.bjc.6690623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulson Judy M., Ocejo-Garcia Marta, Woll Penella J. Neuroendocrine phenotype of small cell lung cancer. Methods Mol Med. 2003;74:61–73. doi: 10.1385/1-59259-323-2:61. [DOI] [PubMed] [Google Scholar]
- Dignam J. D., Martin P. L., Shastry B. S., Roeder R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 1983;101:582–598. doi: 10.1016/0076-6879(83)01039-3. [DOI] [PubMed] [Google Scholar]
- Erickson R. H., Lai R. S., Lotterman C. D., Kim Y. S. Identification of upstream stimulatory factor as an activator of the human dipeptidyl peptidase IV gene in Caco-2 cells. Gene. 2000 Nov 27;258(1-2):77–84. doi: 10.1016/s0378-1119(00)00422-4. [DOI] [PubMed] [Google Scholar]
- Friedmann A. S., Memoli V. A., North W. G. Vasopressin and oxytocin production by non-neuroendocrine lung carcinomas: an apparent low incidence of gene expression. Cancer Lett. 1993 Dec 10;75(2):79–85. doi: 10.1016/0304-3835(93)90191-b. [DOI] [PubMed] [Google Scholar]
- Gao E., Wang Y., Alcorn J. L., Mendelson C. R. The basic helix-loop-helix-zipper transcription factor USF1 regulates expression of the surfactant protein-A gene. J Biol Chem. 1997 Sep 12;272(37):23398–23406. doi: 10.1074/jbc.272.37.23398. [DOI] [PubMed] [Google Scholar]
- Ghosh A. K., Datta P. K., Jacob S. T. The dual role of helix-loop--helix-zipper protein USF in ribosomal RNA gene transcription in vivo. Oncogene. 1997 Feb 6;14(5):589–594. doi: 10.1038/sj.onc.1200866. [DOI] [PubMed] [Google Scholar]
- Gobin S. J., Montagne L., Van Zutphen M., Van Der Valk P., Van Den Elsen P. J., De Groot C. J. Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia. 2001 Oct;36(1):68–77. doi: 10.1002/glia.1096. [DOI] [PubMed] [Google Scholar]
- Grace C. O., Fink G., Quinn J. P. Characterization of potential regulatory elements within the rat arginine vasopressin proximal promoter. Neuropeptides. 1999 Feb;33(1):81–90. doi: 10.1054/npep.1999.0018. [DOI] [PubMed] [Google Scholar]
- Greenall A., Willingham N., Cheung E., Boam D. S., Sharrocks A. D. DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein.protein interactions. J Biol Chem. 2001 Jan 17;276(19):16207–16215. doi: 10.1074/jbc.M011582200. [DOI] [PubMed] [Google Scholar]
- Groenen P. M., Garcia E., Debeer P., Devriendt K., Fryns J. P., Van de Ven W. J. Structure, sequence, and chromosome 19 localization of human USF2 and its rearrangement in a patient with multicystic renal dysplasia. Genomics. 1996 Dec 1;38(2):141–148. doi: 10.1006/geno.1996.0609. [DOI] [PubMed] [Google Scholar]
- Hakimi Mohamed-Ali, Bochar Daniel A., Chenoweth Josh, Lane William S., Mandel Gail, Shiekhattar Ramin. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420–7425. doi: 10.1073/pnas.112008599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris V. K., Coticchia C. M., List H. J., Wellstein A., Riegel A. T. Mitogen-induced expression of the fibroblast growth factor-binding protein is transcriptionally repressed through a non-canonical E-box element. J Biol Chem. 2000 Sep 15;275(37):28539–28548. doi: 10.1074/jbc.M001677200. [DOI] [PubMed] [Google Scholar]
- Heckert L. L. Activation of the rat follicle-stimulating hormone receptor promoter by steroidogenic factor 1 is blocked by protein kinase a and requires upstream stimulatory factor binding to a proximal E box element. Mol Endocrinol. 2001 May;15(5):704–715. doi: 10.1210/mend.15.5.0632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho Mei Yin, Murphy David. The vasopressin gene non-canonical Hogness box: effect on protein binding and promoter function. Mol Cell Endocrinol. 2002 Jan 15;186(1):17–25. doi: 10.1016/s0303-7207(01)00677-3. [DOI] [PubMed] [Google Scholar]
- Hosoya T., Oda Y., Takahashi S., Morita M., Kawauchi S., Ema M., Yamamoto M., Fujii-Kuriyama Y. Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice. Genes Cells. 2001 Apr;6(4):361–374. doi: 10.1046/j.1365-2443.2001.00421.x. [DOI] [PubMed] [Google Scholar]
- Ismail P. M., Lu T., Sawadogo M. Loss of USF transcriptional activity in breast cancer cell lines. Oncogene. 1999 Sep 30;18(40):5582–5591. doi: 10.1038/sj.onc.1202932. [DOI] [PubMed] [Google Scholar]
- Ito T., Udaka N., Ikeda M., Yazawa T., Kageyama R., Kitamura H. Significance of proneural basic helix-loop-helix transcription factors in neuroendocrine differentiation of fetal lung epithelial cells and lung carcinoma cells. Histol Histopathol. 2001 Jan;16(1):335–343. doi: 10.14670/HH-16.335. [DOI] [PubMed] [Google Scholar]
- Jaiswal A. S., Narayan S. Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of the adenomatous polyposis coli (APC) tumor suppressor gene. J Cell Biochem. 2001 Mar 26;81(2):262–277. doi: 10.1002/1097-4644(20010501)81:2<262::aid-jcb1041>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
- Jin X., Shearman L. P., Weaver D. R., Zylka M. J., de Vries G. J., Reppert S. M. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999 Jan 8;96(1):57–68. doi: 10.1016/s0092-8674(00)80959-9. [DOI] [PubMed] [Google Scholar]
- Kaytor E. N., Qian J., Towle H. C., Olson L. K. An indirect role for upstream stimulatory factor in glucose-mediated induction of pyruvate kinase and S14 gene expression. Mol Cell Biochem. 2000 Jul;210(1-2):13–21. doi: 10.1023/a:1007006429041. [DOI] [PubMed] [Google Scholar]
- Li N., Seetharam B. A 69-base pair fragment derived from human transcobalamin II promoter is sufficient for high bidirectional activity in the absence of a TATA box and an initiator element in transfected cells. Role of an E box in transcriptional activity. J Biol Chem. 1998 Oct 23;273(43):28170–28177. doi: 10.1074/jbc.273.43.28170. [DOI] [PubMed] [Google Scholar]
- Luo X., Sawadogo M. Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1308–1313. doi: 10.1073/pnas.93.3.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo X., Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol. 1996 Apr;16(4):1367–1375. doi: 10.1128/mcb.16.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolas G., Bennoun M., Devaux I., Beaumont C., Grandchamp B., Kahn A., Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8780–8785. doi: 10.1073/pnas.151179498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North W. G. Gene regulation of vasopressin and vasopressin receptors in cancer. Exp Physiol. 2000 Mar;85(Spec No):27S–40S. doi: 10.1111/j.1469-445x.2000.tb00005.x. [DOI] [PubMed] [Google Scholar]
- Ocejo-Garcia M., Ahmed S. I., Coulson J. M., Woll P. J. Use of RT-PCR to detect co-expression of neuropeptides and their receptors in lung cancer. Lung Cancer. 2001 Jul;33(1):1–9. doi: 10.1016/s0169-5002(00)00248-8. [DOI] [PubMed] [Google Scholar]
- Paterson J. M., Morrison C. F., Dobson S. P., McAllister J., Quinn J. P. Characterisation of a functional E box motif in the proximal rat preprotachykinin-A promoter. Neurosci Lett. 1995 May 26;191(3):185–188. doi: 10.1016/0304-3940(95)11588-n. [DOI] [PubMed] [Google Scholar]
- Paterson J. M., Morrison C. F., Mendelson S. C., McAllister J., Quinn J. P. An upstream stimulatory factor (USF) binding motif is critical for rat preprotachykinin-A promoter activity in PC12 cells. Biochem J. 1995 Sep 1;310(Pt 2):401–406. doi: 10.1042/bj3100401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qyang Y., Luo X., Lu T., Ismail P. M., Krylov D., Vinson C., Sawadogo M. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol. 1999 Feb;19(2):1508–1517. doi: 10.1128/mcb.19.2.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribeiro A., Pastier D., Kardassis D., Chambaz J., Cardot P. Cooperative binding of upstream stimulatory factor and hepatic nuclear factor 4 drives the transcription of the human apolipoprotein A-II gene. J Biol Chem. 1999 Jan 15;274(3):1216–1225. doi: 10.1074/jbc.274.3.1216. [DOI] [PubMed] [Google Scholar]
- Roy A. L., Meisterernst M., Pognonec P., Roeder R. G. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature. 1991 Nov 21;354(6350):245–248. doi: 10.1038/354245a0. [DOI] [PubMed] [Google Scholar]
- Samoylenko A., Roth U., Jungermann K., Kietzmann T. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood. 2001 May 1;97(9):2657–2666. doi: 10.1182/blood.v97.9.2657. [DOI] [PubMed] [Google Scholar]
- Sausville E., Carney D., Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985 Aug 25;260(18):10236–10241. [PubMed] [Google Scholar]
- Sirito M., Lin Q., Deng J. M., Behringer R. R., Sawadogo M. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3758–3763. doi: 10.1073/pnas.95.7.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirito M., Lin Q., Maity T., Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 1994 Feb 11;22(3):427–433. doi: 10.1093/nar/22.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirito M., Walker S., Lin Q., Kozlowski M. T., Klein W. H., Sawadogo M. Members of the USF family of helix-loop-helix proteins bind DNA as homo- as well as heterodimers. Gene Expr. 1992;2(3):231–240. [PMC free article] [PubMed] [Google Scholar]
- Smale S. T., Baltimore D. The "initiator" as a transcription control element. Cell. 1989 Apr 7;57(1):103–113. doi: 10.1016/0092-8674(89)90176-1. [DOI] [PubMed] [Google Scholar]
- Sommer A., Burkhardt H., Keyse S. M., Lüscher B. Synergistic activation of the mkp-1 gene by protein kinase A signaling and USF, but not c-Myc. FEBS Lett. 2000 Jun 2;474(2-3):146–150. doi: 10.1016/s0014-5793(00)01566-0. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Nishiyama C., Okumura K., Ra C., Ohtake Y., Yokota T. Molecular cloning of rat USF2 cDNA and characterization of splicing variants. Biosci Biotechnol Biochem. 2001 Jan;65(1):56–62. doi: 10.1271/bbb.65.56. [DOI] [PubMed] [Google Scholar]
- Terasaki T., Matsuno Y., Shimosato Y., Yamaguchi K., Ichinose H., Nagatsu T., Kato K. Establishment of a human small cell lung cancer cell line producing a large amount of anti-diuretic hormone. Jpn J Cancer Res. 1994 Jul;85(7):718–722. doi: 10.1111/j.1349-7006.1994.tb02420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Therrien M., Drouin J. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol. 1993 Apr;13(4):2342–2353. doi: 10.1128/mcb.13.4.2342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
- Virolle Thierry, Coraux Christelle, Ferrigno Olivier, Cailleteau Laurence, Ortonne Jean-Paul, Pognonec Philippe, Aberdam Daniel. Binding of USF to a non-canonical E-box following stress results in a cell-specific derepression of the lama3 gene. Nucleic Acids Res. 2002 Apr 15;30(8):1789–1798. doi: 10.1093/nar/30.8.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Workman J. L., Roeder R. G., Kingston R. E. An upstream transcription factor, USF (MLTF), facilitates the formation of preinitiation complexes during in vitro chromatin assembly. EMBO J. 1990 Apr;9(4):1299–1308. doi: 10.1002/j.1460-2075.1990.tb08239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Waardenburg R. C., Meijer C., Pinto-Sietsma S. J., de Vries E. G., Timens W., Mulder N. M. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines. Anticancer Res. 1998 Jan-Feb;18(1A):91–95. [PubMed] [Google Scholar]