Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):453–460. doi: 10.1042/BJ20020827

Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts.

Chun-Fa Zhang 1, Savita Dhanvantari 1, Hong Lou 1, Y Peng Loh 1
PMCID: PMC1223124  PMID: 12403651

Abstract

Carboxypeptidase E (CPE) functions as a regulated secretory pathway sorting receptor for several prohormones, including pro-opiomelanocortin (POMC), proenkephalin and proinsulin. The association of CPE with lipid rafts in the trans -Golgi network and secretory granule membranes is necessary for its sorting receptor function. We now provide evidence that a domain within the C-terminal 25 residues of CPE functions as a signal for both raft association and the sorting of CPE to the regulated secretory pathway. A fusion protein containing the extracellular domain of the human interleukin-2 receptor Tac (N-Tac) and the C-terminal 25 amino acids of CPE was transfected into Neuro2A cells. This fusion protein floated in sucrose density gradients, indicating raft association, and co-localized with chromogranin A (CGA), a secretory granule marker. To define further a minimum sequence required for raft association and sorting, deletion mutants of CPE that lacked the C-terminal four or 15 residues (CPE-Delta4 and CPE-Delta15 respectively) were transfected into a clone of CPE-deficient Neuro2A cells. In contrast with full-length CPE, neither CPE-Delta4 nor CPE-Delta15 floated in sucrose density gradients. The sorting of both CPE-Delta4 and CPE-Delta15 to the regulated secretory pathway was impaired, as indicated by significantly increased basal secretion and a lack of response to stimulation. Additionally, there was a significant decrease in the co-localization of mutant CPE immunofluorescence with CGA when compared with full-length CPE. Finally, the sorting of the prohormone POMC to the regulated pathway was impaired in cells transfected with either CPE-Delta4 or CPE-Delta15. We conclude that the sorting of CPE to the regulated secretory pathway in endocrine cells is mediated by lipid rafts, and that the C-terminal four residues of CPE, i.e. Thr(431)-Leu-Asn-Phe(434), are required for raft association and sorting.

Full Text

The Full Text of this article is available as a PDF (255.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvan P., Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 1998 Jun 15;332(Pt 3):593–610. doi: 10.1042/bj3320593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blázquez M., Docherty K., Shennan K. I. Association of prohormone convertase 3 with membrane lipid rafts. J Mol Endocrinol. 2001 Aug;27(1):107–116. doi: 10.1677/jme.0.0270107. [DOI] [PubMed] [Google Scholar]
  3. Blázquez M., Thiele C., Huttner W. B., Docherty K., Shennan K. I. Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J. 2000 Aug 1;349(Pt 3):843–852. doi: 10.1042/bj3490843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  5. Chamberlain L. H., Burgoyne R. D., Gould G. W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5619–5624. doi: 10.1073/pnas.091502398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chatterjee S., Smith E. R., Hanada K., Stevens V. L., Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J. 2001 Apr 2;20(7):1583–1592. doi: 10.1093/emboj/20.7.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cool D. R., Normant E., Shen F., Chen H. C., Pannell L., Zhang Y., Loh Y. P. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell. 1997 Jan 10;88(1):73–83. doi: 10.1016/s0092-8674(00)81860-7. [DOI] [PubMed] [Google Scholar]
  9. Dhanvantari S., Loh Y. P. Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem. 2000 Sep 22;275(38):29887–29893. doi: 10.1074/jbc.M005364200. [DOI] [PubMed] [Google Scholar]
  10. Dhanvantari Savita, Arnaoutova Irina, Snell Chris R., Steinbach Peter J., Hammond Kelli, Caputo Gregory A., London Erwin, Loh Y. Peng. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry. 2002 Jan 8;41(1):52–60. doi: 10.1021/bi015698n. [DOI] [PubMed] [Google Scholar]
  11. Fricker L. D., Das B., Angeletti R. H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem. 1990 Feb 15;265(5):2476–2482. [PubMed] [Google Scholar]
  12. Fricker L. D., Devi L. Posttranslational processing of carboxypeptidase E, a neuropeptide-processing enzyme, in AtT-20 cells and bovine pituitary secretory granules. J Neurochem. 1993 Oct;61(4):1404–1415. doi: 10.1111/j.1471-4159.1993.tb13634.x. [DOI] [PubMed] [Google Scholar]
  13. Gokay K. E., Young R. S., Wilson J. M. Cytoplasmic signals mediate apical early endosomal targeting of endotubin in MDCK cells. Traffic. 2001 Jul;2(7):487–500. doi: 10.1034/j.1600-0854.2001.20706.x. [DOI] [PubMed] [Google Scholar]
  14. Kim T., Tao-Cheng J. H., Eiden L. E., Loh Y. P. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell. 2001 Aug 24;106(4):499–509. doi: 10.1016/s0092-8674(01)00459-7. [DOI] [PubMed] [Google Scholar]
  15. Kimura A., Baumann C. A., Chiang S. H., Saltiel A. R. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9098–9103. doi: 10.1073/pnas.151252898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurzchalia T. V., Parton R. G. Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999 Aug;11(4):424–431. doi: 10.1016/s0955-0674(99)80061-1. [DOI] [PubMed] [Google Scholar]
  17. Lang T., Bruns D., Wenzel D., Riedel D., Holroyd P., Thiele C., Jahn R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 2001 May 1;20(9):2202–2213. doi: 10.1093/emboj/20.9.2202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin S., Naim H. Y., Rodriguez A. C., Roth M. G. Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol. 1998 Jul 13;142(1):51–57. doi: 10.1083/jcb.142.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lipardi C., Nitsch L., Zurzolo C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell. 2000 Feb;11(2):531–542. doi: 10.1091/mbc.11.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Milgram S. L., Mains R. E., Eipper B. A. Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. J Biol Chem. 1996 Jul 19;271(29):17526–17535. doi: 10.1074/jbc.271.29.17526. [DOI] [PubMed] [Google Scholar]
  21. Nichols B. J., Kenworthy A. K., Polishchuk R. S., Lodge R., Roberts T. H., Hirschberg K., Phair R. D., Lippincott-Schwartz J. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 2001 Apr 30;153(3):529–541. doi: 10.1083/jcb.153.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Polyak M. J., Tailor S. H., Deans J. P. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol. 1998 Oct 1;161(7):3242–3248. [PubMed] [Google Scholar]
  23. Puertollano R., Alonso M. A. A short peptide motif at the carboxyl terminus is required for incorporation of the integral membrane MAL protein to glycolipid-enriched membranes. J Biol Chem. 1998 May 22;273(21):12740–12745. doi: 10.1074/jbc.273.21.12740. [DOI] [PubMed] [Google Scholar]
  24. Rindler M. J. Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem. 1998 Nov 20;273(47):31180–31185. doi: 10.1074/jbc.273.47.31180. [DOI] [PubMed] [Google Scholar]
  25. Scheiffele P., Roth M. G., Simons K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 1997 Sep 15;16(18):5501–5508. doi: 10.1093/emboj/16.18.5501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shennan K. I., Taylor N. A., Docherty K. Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J Biol Chem. 1994 Jul 15;269(28):18646–18650. [PubMed] [Google Scholar]
  27. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  28. Song L., Fricker L. D. Calcium- and pH-dependent aggregation of carboxypeptidase E. J Biol Chem. 1995 Apr 7;270(14):7963–7967. doi: 10.1074/jbc.270.14.7963. [DOI] [PubMed] [Google Scholar]
  29. Tooze S. A., Martens G. J., Huttner W. B. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 2001 Mar;11(3):116–122. doi: 10.1016/s0962-8924(00)01907-3. [DOI] [PubMed] [Google Scholar]
  30. Varlamov O., Fricker L. D. The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing. J Biol Chem. 1996 Mar 15;271(11):6077–6083. doi: 10.1074/jbc.271.11.6077. [DOI] [PubMed] [Google Scholar]
  31. Voorhees P., Deignan E., van Donselaar E., Humphrey J., Marks M. S., Peters P. J., Bonifacino J. S. An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J. 1995 Oct 16;14(20):4961–4975. doi: 10.1002/j.1460-2075.1995.tb00179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang Y., Thiele C., Huttner W. B. Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network. Traffic. 2000 Dec;1(12):952–962. doi: 10.1034/j.1600-0854.2000.011205.x. [DOI] [PubMed] [Google Scholar]
  33. Wolins N., Bosshart H., Küster H., Bonifacino J. S. Aggregation as a determinant of protein fate in post-Golgi compartments: role of the luminal domain of furin in lysosomal targeting. J Cell Biol. 1997 Dec 29;139(7):1735–1745. doi: 10.1083/jcb.139.7.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xiang Y., Molloy S. S., Thomas L., Thomas G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol Biol Cell. 2000 Apr;11(4):1257–1273. doi: 10.1091/mbc.11.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES