Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):429–440. doi: 10.1042/BJ20021302

Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron.

Ralph N Watts 1, Prem Ponka 1, Des R Richardson 1
PMCID: PMC1223127  PMID: 12423201

Abstract

Many effector functions of nitrogen monoxide (NO) and carbon monoxide (CO) are mediated through their high-affinity for iron (Fe). In this review, the roles of NO and CO are examined in terms of their effects on the molecular and cellular mechanisms involved in Fe metabolism. Both NO and CO avidly form complexes with a plethora of Fe-containing molecules. The generation of NO and CO is mediated by the nitric oxide synthase and haem oxygenase (HO) families of enzymes respectively. The effects of NO on Fe metabolism have been well characterized, whereas knowledge of the effects of CO remains within its infancy. In terms of the role of NO in Fe metabolism, one of the best characterized interactions includes its effect on the iron regulatory proteins. These molecules are mRNA-binding proteins that control the expression of the transferrin receptor 1 and ferritin, molecules that are involved in Fe uptake and storage respectively. Apart from this, activated macrophages impart their cytotoxic activity by generating NO, which results in marked Fe mobilization from tumour-cell targets. This deprives the cell of the Fe that is required for DNA synthesis and energy production. Considering that HO degrades haem, resulting in the release of CO, Fe(II) and biliverdin, it is suggested that a CO-Fe complex will form. This may account for the rapid Fe mobilization observed from macrophages after haemoglobin catabolism. Intriguingly, overexpression of HO results in cellular Fe mobilization, suggesting that CO has a similar effect to NO on Fe trafficking. Preliminary evidence suggests that, like NO, CO plays important roles in Fe metabolism.

Full Text

The Full Text of this article is available as a PDF (314.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000 Jun 30;275(26):19906–19912. doi: 10.1074/jbc.M000713200. [DOI] [PubMed] [Google Scholar]
  2. Alderton W. K., Cooper C. E., Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug 1;357(Pt 3):593–615. doi: 10.1042/0264-6021:3570593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amersi Farin, Shen Xiu-Da, Anselmo Dean, Melinek Judy, Iyer Suhasani, Southard Daniel J., Katori Masamichi, Volk Hans-Dieter, Busuttil Ronald W., Buelow Roland. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology. 2002 Apr;35(4):815–823. doi: 10.1053/jhep.2002.32467. [DOI] [PubMed] [Google Scholar]
  4. Anderson B. F., Baker H. M., Dodson E. J., Norris G. E., Rumball S. V., Waters J. M., Baker E. N. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1769–1773. doi: 10.1073/pnas.84.7.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andrews N. C. Disorders of iron metabolism. N Engl J Med. 1999 Dec 23;341(26):1986–1995. doi: 10.1056/NEJM199912233412607. [DOI] [PubMed] [Google Scholar]
  6. Andrews N. C. The iron transporter DMT1. Int J Biochem Cell Biol. 1999 Oct;31(10):991–994. doi: 10.1016/s1357-2725(99)00065-5. [DOI] [PubMed] [Google Scholar]
  7. Arnelle D. R., Stamler J. S. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995 Apr 20;318(2):279–285. doi: 10.1006/abbi.1995.1231. [DOI] [PubMed] [Google Scholar]
  8. Baker E., van Bockxmeer F. M., Morgan E. H. Distribution of transferrin and transferrin receptors in the rabbit placenta. Q J Exp Physiol. 1983 Jul;68(3):359–372. doi: 10.1113/expphysiol.1983.sp002731. [DOI] [PubMed] [Google Scholar]
  9. Barañano D. E., Ferris C. D., Snyder S. H. Atypical neural messengers. Trends Neurosci. 2001 Feb;24(2):99–106. doi: 10.1016/s0166-2236(00)01716-1. [DOI] [PubMed] [Google Scholar]
  10. Barañano D. E., Snyder S. H. Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):10996–11002. doi: 10.1073/pnas.191351298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bastian N. R., Yim C. Y., Hibbs J. B., Jr, Samlowski W. E. Induction of iron-derived EPR signals in murine cancers by nitric oxide. Evidence for multiple intracellular targets. J Biol Chem. 1994 Feb 18;269(7):5127–5131. [PubMed] [Google Scholar]
  12. Bauer P. M., Buga G. M., Fukuto J. M., Pegg A. E., Ignarro L. J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J Biol Chem. 2001 Jul 18;276(37):34458–34464. doi: 10.1074/jbc.M105219200. [DOI] [PubMed] [Google Scholar]
  13. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bouton C., Demple B. Nitric oxide-inducible expression of heme oxygenase-1 in human cells. Translation-independent stabilization of the mRNA and evidence for direct action of nitric oxide. J Biol Chem. 2000 Oct 20;275(42):32688–32693. doi: 10.1074/jbc.275.42.32688. [DOI] [PubMed] [Google Scholar]
  15. Brüne B., Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol. 1987 Oct;32(4):497–504. [PubMed] [Google Scholar]
  16. Cairo G., Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem J. 2000 Dec 1;352(Pt 2):241–250. [PMC free article] [PubMed] [Google Scholar]
  17. Cairo Gaetano, Ronchi Raffaella, Recalcati Stefania, Campanella Alessandro, Minotti Giorgio. Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase. Biochemistry. 2002 Jun 11;41(23):7435–7442. doi: 10.1021/bi025756k. [DOI] [PubMed] [Google Scholar]
  18. Camaschella C., Roetto A., Calì A., De Gobbi M., Garozzo G., Carella M., Majorano N., Totaro A., Gasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet. 2000 May;25(1):14–15. doi: 10.1038/75534. [DOI] [PubMed] [Google Scholar]
  19. Camhi S. L., Alam J., Otterbein L., Sylvester S. L., Choi A. M. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol. 1995 Oct;13(4):387–398. doi: 10.1165/ajrcmb.13.4.7546768. [DOI] [PubMed] [Google Scholar]
  20. Carmichael A. J., Steel-Goodwin L., Gray B., Arroyo C. M. Nitric oxide interaction with lactoferrin and its production by macrophage cells studied by EPR and spin trapping. Free Radic Res Commun. 1993;19 (Suppl 1):S201–S209. doi: 10.3109/10715769309056s201. [DOI] [PubMed] [Google Scholar]
  21. Cary S. P., Marletta M. A. The case of CO signaling: why the jury is still out. J Clin Invest. 2001 May;107(9):1071–1073. doi: 10.1172/JCI12823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cavicchi M., Gibbs L., Whittle B. J. Inhibition of inducible nitric oxide synthase in the human intestinal epithelial cell line, DLD-1, by the inducers of heme oxygenase 1, bismuth salts, heme, and nitric oxide donors. Gut. 2000 Dec;47(6):771–778. doi: 10.1136/gut.47.6.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chakder S., Rathi S., Ma X. L., Rattan S. Heme oxygenase inhibitor zinc protoporphyrin IX causes an activation of nitric oxide synthase in the rabbit internal anal sphincter. J Pharmacol Exp Ther. 1996 Jun;277(3):1376–1382. [PubMed] [Google Scholar]
  24. Chen K., Maines M. D. Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38. Cell Mol Biol (Noisy-le-grand) 2000 May;46(3):609–617. [PubMed] [Google Scholar]
  25. Choi A. M., Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996 Jul;15(1):9–19. doi: 10.1165/ajrcmb.15.1.8679227. [DOI] [PubMed] [Google Scholar]
  26. Choi Jong Weon, Im Moon Whan, Pai Soo Hwan. Nitric oxide production increases during normal pregnancy and decreases in preeclampsia. Ann Clin Lab Sci. 2002 Summer;32(3):257–263. [PubMed] [Google Scholar]
  27. Conrad M. E. Introduction: iron overloading disorders and iron regulation. Semin Hematol. 1998 Jan;35(1):1–4. [PubMed] [Google Scholar]
  28. Cooper C. E. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999 May 5;1411(2-3):290–309. doi: 10.1016/s0005-2728(99)00021-3. [DOI] [PubMed] [Google Scholar]
  29. Datta P. K., Koukouritaki S. B., Hopp K. A., Lianos E. A. Heme oxygenase-1 induction attenuates inducible nitric oxide synthase expression and proteinuria in glomerulonephritis. J Am Soc Nephrol. 1999 Dec;10(12):2540–2550. doi: 10.1681/ASN.V10122540. [DOI] [PubMed] [Google Scholar]
  30. Dennery P. A., Spitz D. R., Yang G., Tatarov A., Lee C. S., Shegog M. L., Poss K. D. Oxygen toxicity and iron accumulation in the lungs of mice lacking heme oxygenase-2. J Clin Invest. 1998 Mar 1;101(5):1001–1011. doi: 10.1172/JCI448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Dietrich C. G., Ottenhoff R., de Waart D. R., Oude Elferink R. P. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology. 2001 Oct 5;167(1):73–81. doi: 10.1016/s0300-483x(01)00459-0. [DOI] [PubMed] [Google Scholar]
  32. Ding Y., McCoubrey W. K., Jr, Maines M. D. Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular 'sink' for NO? Eur J Biochem. 1999 Sep;264(3):854–861. doi: 10.1046/j.1432-1327.1999.00677.x. [DOI] [PubMed] [Google Scholar]
  33. Domachowske J. B. The role of nitric oxide in the regulation of cellular iron metabolism. Biochem Mol Med. 1997 Feb;60(1):1–7. doi: 10.1006/bmme.1996.2557. [DOI] [PubMed] [Google Scholar]
  34. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
  35. Drapier J. C., Hibbs J. B., Jr Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol. 1988 Apr 15;140(8):2829–2838. [PubMed] [Google Scholar]
  36. Drapier J. C., Hibbs J. B., Jr Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest. 1986 Sep;78(3):790–797. doi: 10.1172/JCI112642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Drapier J. C., Hirling H., Wietzerbin J., Kaldy P., Kühn L. C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 1993 Sep;12(9):3643–3649. doi: 10.1002/j.1460-2075.1993.tb06038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Durante W., Kroll M. H., Christodoulides N., Peyton K. J., Schafer A. I. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res. 1997 Apr;80(4):557–564. doi: 10.1161/01.res.80.4.557. [DOI] [PubMed] [Google Scholar]
  39. Feger F., Ferry-Dumazet H., Mamani Matsuda M., Bordenave J., Dupouy M., Nussler A. K., Arock M., Devevey L., Nafziger J., Guillosson J. J. Role of iron in tumor cell protection from the pro-apoptotic effect of nitric oxide. Cancer Res. 2001 Jul 1;61(13):5289–5294. [PubMed] [Google Scholar]
  40. Ferris C. D., Jaffrey S. R., Sawa A., Takahashi M., Brady S. D., Barrow R. K., Tysoe S. A., Wolosker H., Barañano D. E., Doré S. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1999 Jul;1(3):152–157. doi: 10.1038/11072. [DOI] [PubMed] [Google Scholar]
  41. Fillet G., Cook J. D., Finch C. A. Storage iron kinetics. VII. A biologic model for reticuloendothelial iron transport. J Clin Invest. 1974 Jun;53(6):1527–1533. doi: 10.1172/JCI107703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Finch C. A., Deubelbeiss K., Cook J. D., Eschbach J. W., Harker L. A., Funk D. D., Marsaglia G., Hillman R. S., Slichter S., Adamson J. W. Ferrokinetics in man. Medicine (Baltimore) 1970 Jan;49(1):17–53. doi: 10.1097/00005792-197001000-00002. [DOI] [PubMed] [Google Scholar]
  43. Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1148–1153. doi: 10.1073/pnas.95.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fleming M. D., Trenor C. C., 3rd, Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997 Aug;16(4):383–386. doi: 10.1038/ng0897-383. [DOI] [PubMed] [Google Scholar]
  45. Fleming Robert E., Ahmann John R., Migas Mary C., Waheed Abdul, Koeffler H. Phillip, Kawabata Hiroshi, Britton Robert S., Bacon Bruce R., Sly William S. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci U S A. 2002 Jul 19;99(16):10653–10658. doi: 10.1073/pnas.162360699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Foresti R., Clark J. E., Green C. J., Motterlini R. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J Biol Chem. 1997 Jul 18;272(29):18411–18417. doi: 10.1074/jbc.272.29.18411. [DOI] [PubMed] [Google Scholar]
  47. Friebe A., Schultz G., Koesling D. Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J. 1996 Dec 16;15(24):6863–6868. [PMC free article] [PubMed] [Google Scholar]
  48. Ghafourifar P., Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997 Dec 1;418(3):291–296. doi: 10.1016/s0014-5793(97)01397-5. [DOI] [PubMed] [Google Scholar]
  49. Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
  50. Griffith O. W., Stuehr D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  51. Griscavage J. M., Fukuto J. M., Komori Y., Ignarro L. J. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem. 1994 Aug 26;269(34):21644–21649. [PubMed] [Google Scholar]
  52. Grozdanovic Z. NO message from muscle. Microsc Res Tech. 2001 Nov 1;55(3):148–153. doi: 10.1002/jemt.1165. [DOI] [PubMed] [Google Scholar]
  53. Grundemar L., Ny L. Pitfalls using metalloporphyrins in carbon monoxide research. Trends Pharmacol Sci. 1997 Jun;18(6):193–195. doi: 10.1016/s0165-6147(97)01065-1. [DOI] [PubMed] [Google Scholar]
  54. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  55. Guo B., Phillips J. D., Yu Y., Leibold E. A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995 Sep 15;270(37):21645–21651. doi: 10.1074/jbc.270.37.21645. [DOI] [PubMed] [Google Scholar]
  56. Harrison M. D., Jones C. E., Dameron C. T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem. 1999 Apr;4(2):145–153. doi: 10.1007/s007750050297. [DOI] [PubMed] [Google Scholar]
  57. Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
  58. Hartsfield C. L., Alam J., Cook J. L., Choi A. M. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol. 1997 Nov;273(5 Pt 1):L980–L988. doi: 10.1152/ajplung.1997.273.5.L980. [DOI] [PubMed] [Google Scholar]
  59. Hartsfield Cynthia L. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal. 2002 Apr;4(2):301–307. doi: 10.1089/152308602753666352. [DOI] [PubMed] [Google Scholar]
  60. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hermle G., Schütte H., Walmrath D., Geiger K., Seeger W., Grimminger F. Ventilation-perfusion mismatch after lung ischemia-reperfusion. Protective effect of nitric oxide. Am J Respir Crit Care Med. 1999 Oct;160(4):1179–1187. doi: 10.1164/ajrccm.160.4.9808034. [DOI] [PubMed] [Google Scholar]
  62. Hershko C. Control of disease by selective iron depletion: a novel therapeutic strategy utilizing iron chelators. Baillieres Clin Haematol. 1994 Dec;7(4):965–1000. doi: 10.1016/s0950-3536(05)80133-7. [DOI] [PubMed] [Google Scholar]
  63. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Iron depletion: possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem Biophys Res Commun. 1984 Sep 17;123(2):716–723. doi: 10.1016/0006-291x(84)90288-2. [DOI] [PubMed] [Google Scholar]
  64. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  65. Hillman R. S., Henderson P. A. Control of marrow production by the level of iron supply. J Clin Invest. 1969 Mar;48(3):454–460. doi: 10.1172/JCI106002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hirling H., Henderson B. R., Kühn L. C. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 1994 Jan 15;13(2):453–461. doi: 10.1002/j.1460-2075.1994.tb06280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hoetzel A., Vagts D. A., Loop T., Humar M., Bauer M., Pahl H. L., Geiger K. K., Pannen B. H. Effect of nitric oxide on shock-induced hepatic heme oxygenase-1 expression in the rat. Hepatology. 2001 Apr;33(4):925–937. doi: 10.1053/jhep.2001.23431. [DOI] [PubMed] [Google Scholar]
  68. Ignarro L. J. Regulation of cytosolic guanylyl cyclase by porphyrins and metalloporphyrins. Adv Pharmacol. 1994;26:35–65. doi: 10.1016/s1054-3589(08)60050-2. [DOI] [PubMed] [Google Scholar]
  69. Ingi T., Cheng J., Ronnett G. V. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron. 1996 Apr;16(4):835–842. doi: 10.1016/s0896-6273(00)80103-8. [DOI] [PubMed] [Google Scholar]
  70. Ishizaka N., Griendling K. K. Heme oxygenase-1 is regulated by angiotensin II in rat vascular smooth muscle cells. Hypertension. 1997 Mar;29(3):790–795. doi: 10.1161/01.hyp.29.3.790. [DOI] [PubMed] [Google Scholar]
  71. Iwai K., Drake S. K., Wehr N. B., Weissman A. M., LaVaute T., Minato N., Klausner R. D., Levine R. L., Rouault T. A. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4924–4928. doi: 10.1073/pnas.95.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977 Sep;50(3):433–439. [PubMed] [Google Scholar]
  73. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
  74. Joost H. G., Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001 Oct-Dec;18(4):247–256. doi: 10.1080/09687680110090456. [DOI] [PubMed] [Google Scholar]
  75. Kawabata H., Germain R. S., Vuong P. T., Nakamaki T., Said J. W., Koeffler H. P. Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem. 2000 Jun 2;275(22):16618–16625. doi: 10.1074/jbc.M908846199. [DOI] [PubMed] [Google Scholar]
  76. Kawabata H., Yang R., Hirama T., Vuong P. T., Kawano S., Gombart A. F., Koeffler H. P. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999 Jul 23;274(30):20826–20832. doi: 10.1074/jbc.274.30.20826. [DOI] [PubMed] [Google Scholar]
  77. Keyse S. M., Tyrrell R. M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A. 1989 Jan;86(1):99–103. doi: 10.1073/pnas.86.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Khatsenko O. G., Gross S. S., Rifkind A. B., Vane J. R. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11147–11151. doi: 10.1073/pnas.90.23.11147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kim S., Ponka P. Control of transferrin receptor expression via nitric oxide-mediated modulation of iron-regulatory protein 2. J Biol Chem. 1999 Nov 12;274(46):33035–33042. doi: 10.1074/jbc.274.46.33035. [DOI] [PubMed] [Google Scholar]
  80. Kim S., Ponka P. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J Biol Chem. 2000 Mar 3;275(9):6220–6226. doi: 10.1074/jbc.275.9.6220. [DOI] [PubMed] [Google Scholar]
  81. Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R., Jr Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 1995 Mar 17;270(11):5710–5713. doi: 10.1074/jbc.270.11.5710. [DOI] [PubMed] [Google Scholar]
  82. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Kutty R. K., Nagineni C. N., Kutty G., Hooks J. J., Chader G. J., Wiggert B. Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta. J Cell Physiol. 1994 May;159(2):371–378. doi: 10.1002/jcp.1041590221. [DOI] [PubMed] [Google Scholar]
  84. Lacza Z., Puskar M., Figueroa J. P., Zhang J., Rajapakse N., Busija D. W. Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med. 2001 Dec 15;31(12):1609–1615. doi: 10.1016/s0891-5849(01)00754-7. [DOI] [PubMed] [Google Scholar]
  85. Lamb N. J., Quinlan G. J., Mumby S., Evans T. W., Gutteridge J. M. Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron. Biochem J. 1999 Nov 15;344(Pt 1):153–158. [PMC free article] [PubMed] [Google Scholar]
  86. Lancaster J. R., Jr, Hibbs J. B., Jr EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1223–1227. doi: 10.1073/pnas.87.3.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Lancaster J. R., Jr Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141. doi: 10.1073/pnas.91.17.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Le Nghia T. V., Richardson Des R. Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol. 2002 Feb;34(2):103–108. doi: 10.1016/s1357-2725(01)00104-2. [DOI] [PubMed] [Google Scholar]
  89. Lee M., Arosio P., Cozzi A., Chasteen N. D. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry. 1994 Mar 29;33(12):3679–3687. doi: 10.1021/bi00178a026. [DOI] [PubMed] [Google Scholar]
  90. Lee P. J., Alam J., Sylvester S. L., Inamdar N., Otterbein L., Choi A. M. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol. 1996 Jun;14(6):556–568. doi: 10.1165/ajrcmb.14.6.8652184. [DOI] [PubMed] [Google Scholar]
  91. Lee P. J., Jiang B. H., Chin B. Y., Iyer N. V., Alam J., Semenza G. L., Choi A. M. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997 Feb 28;272(9):5375–5381. [PubMed] [Google Scholar]
  92. Lepoivre M., Fieschi F., Coves J., Thelander L., Fontecave M. Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun. 1991 Aug 30;179(1):442–448. doi: 10.1016/0006-291x(91)91390-x. [DOI] [PubMed] [Google Scholar]
  93. Levinson W., Oppermann H., Jackson J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta. 1980;606(1):170–180. doi: 10.1016/0005-2787(80)90108-2. [DOI] [PubMed] [Google Scholar]
  94. Li H., Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000 Feb;190(3):244–254. doi: 10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  95. Lipton A. J., Johnson M. A., Macdonald T., Lieberman M. W., Gozal D., Gaston B. S-nitrosothiols signal the ventilatory response to hypoxia. Nature. 2001 Sep 13;413(6852):171–174. doi: 10.1038/35093117. [DOI] [PubMed] [Google Scholar]
  96. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  97. Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
  98. Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
  99. Maines M. D., Trakshel G. M., Kutty R. K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem. 1986 Jan 5;261(1):411–419. [PubMed] [Google Scholar]
  100. Mannick J. B., Schonhoff C., Papeta N., Ghafourifar P., Szibor M., Fang K., Gaston B. S-Nitrosylation of mitochondrial caspases. J Cell Biol. 2001 Sep 10;154(6):1111–1116. doi: 10.1083/jcb.200104008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Marks G. S., Brien J. F., Nakatsu K., McLaughlin B. E. Does carbon monoxide have a physiological function? Trends Pharmacol Sci. 1991 May;12(5):185–188. doi: 10.1016/0165-6147(91)90544-3. [DOI] [PubMed] [Google Scholar]
  102. Masini E., Salvemini D., Ndisang J. F., Gai P., Berni L., Moncini M., Bianchi S., Mannaioni P. F. Cardioprotective activity of endogenous and exogenous nitric oxide on ischaemia reperfusion injury in isolated guinea pig hearts. Inflamm Res. 1999 Nov;48(11):561–568. doi: 10.1007/s000110050504. [DOI] [PubMed] [Google Scholar]
  103. McCoubrey W. K., Jr, Huang T. J., Maines M. D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997 Jul 15;247(2):725–732. doi: 10.1111/j.1432-1033.1997.00725.x. [DOI] [PubMed] [Google Scholar]
  104. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000 Feb;5(2):299–309. doi: 10.1016/s1097-2765(00)80425-6. [DOI] [PubMed] [Google Scholar]
  105. Miller S. M., Farrugia G., Schmalz P. F., Ermilov L. G., Maines M. D., Szurszewski J. H. Heme oxygenase 2 is present in interstitial cell networks of the mouse small intestine. Gastroenterology. 1998 Feb;114(2):239–244. doi: 10.1016/s0016-5085(98)70473-1. [DOI] [PubMed] [Google Scholar]
  106. Mohr S., Stamler J. S., Brüne B. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett. 1994 Jul 18;348(3):223–227. doi: 10.1016/0014-5793(94)00596-6. [DOI] [PubMed] [Google Scholar]
  107. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  108. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  109. Morgan E. H. Inhibition of reticulocyte iron uptake by NH4Cl and CH3NH2. Biochim Biophys Acta. 1981 Mar 20;642(1):119–134. doi: 10.1016/0005-2736(81)90143-7. [DOI] [PubMed] [Google Scholar]
  110. Morse Danielle, Choi Augustine M. K. Heme oxygenase-1: the "emerging molecule" has arrived. Am J Respir Cell Mol Biol. 2002 Jul;27(1):8–16. doi: 10.1165/ajrcmb.27.1.4862. [DOI] [PubMed] [Google Scholar]
  111. Morse Danielle, Sethi Jigme, Choi Augustine M. K. Carbon monoxide-dependent signaling. Crit Care Med. 2002 Jan;30(1 Suppl):S12–S17. [PubMed] [Google Scholar]
  112. Motterlini R., Foresti R., Intaglietta M., Winslow R. M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H107–H114. doi: 10.1152/ajpheart.1996.270.1.H107. [DOI] [PubMed] [Google Scholar]
  113. Motterlini Roberto, Clark James E., Foresti Roberta, Sarathchandra Padmini, Mann Brian E., Green Colin J. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res. 2002 Feb 8;90(2):E17–E24. doi: 10.1161/hh0202.104530. [DOI] [PubMed] [Google Scholar]
  114. Munro H. N., Linder M. C. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol Rev. 1978 Apr;58(2):317–396. doi: 10.1152/physrev.1978.58.2.317. [DOI] [PubMed] [Google Scholar]
  115. Nath K. A., Balla G., Vercellotti G. M., Balla J., Jacob H. S., Levitt M. D., Rosenberg M. E. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest. 1992 Jul;90(1):267–270. doi: 10.1172/JCI115847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  117. Nelson R. J., Demas G. E., Huang P. L., Fishman M. C., Dawson V. L., Dawson T. M., Snyder S. H. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995 Nov 23;378(6555):383–386. doi: 10.1038/378383a0. [DOI] [PubMed] [Google Scholar]
  118. Nestel F. P., Greene R. N., Kichian K., Ponka P., Lapp W. S. Activation of macrophage cytostatic effector mechanisms during acute graft-versus-host disease: release of intracellular iron and nitric oxide-mediated cytostasis. Blood. 2000 Sep 1;96(5):1836–1843. [PubMed] [Google Scholar]
  119. Oliveira L., Drapier J. C. Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6550–6555. doi: 10.1073/pnas.120571797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Olson J. S., Phillips G. N., Jr Kinetic pathways and barriers for ligand binding to myoglobin. J Biol Chem. 1996 Jul 26;271(30):17593–17596. doi: 10.1074/jbc.271.30.17593. [DOI] [PubMed] [Google Scholar]
  121. Oria R., Sánchez L., Houston T., Hentze M. W., Liew F. Y., Brock J. H. Effect of nitric oxide on expression of transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells. Blood. 1995 May 15;85(10):2962–2966. [PubMed] [Google Scholar]
  122. Otterbein L. E., Mantell L. L., Choi A. M. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999 Apr;276(4 Pt 1):L688–L694. doi: 10.1152/ajplung.1999.276.4.L688. [DOI] [PubMed] [Google Scholar]
  123. Otterbein L., Sylvester S. L., Choi A. M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. Am J Respir Cell Mol Biol. 1995 Nov;13(5):595–601. doi: 10.1165/ajrcmb.13.5.7576696. [DOI] [PubMed] [Google Scholar]
  124. Page M. A., Baker E., Morgan E. H. Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol. 1984 Jan;246(1 Pt 1):G26–G33. doi: 10.1152/ajpgi.1984.246.1.G26. [DOI] [PubMed] [Google Scholar]
  125. Pantopoulos K., Weiss G., Hentze M. W. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol. 1996 Jul;16(7):3781–3788. doi: 10.1128/mcb.16.7.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Pawloski J. R., Hess D. T., Stamler J. S. Export by red blood cells of nitric oxide bioactivity. Nature. 2001 Feb 1;409(6820):622–626. doi: 10.1038/35054560. [DOI] [PubMed] [Google Scholar]
  127. Peyton Kelly J., Reyna Sylvia V., Chapman Gary B., Ensenat Diana, Liu Xiao-ming, Wang Hong, Schafer Andrew I., Durante William. Heme oxygenase-1-derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth. Blood. 2002 Jun 15;99(12):4443–4448. doi: 10.1182/blood.v99.12.4443. [DOI] [PubMed] [Google Scholar]
  128. Piantadosi Claude A. Biological chemistry of carbon monoxide. Antioxid Redox Signal. 2002 Apr;4(2):259–270. doi: 10.1089/152308602753666316. [DOI] [PubMed] [Google Scholar]
  129. Polte T., Abate A., Dennery P. A., Schröder H. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1209–1215. doi: 10.1161/01.atv.20.5.1209. [DOI] [PubMed] [Google Scholar]
  130. Ponka P., Beaumont C., Richardson D. R. Function and regulation of transferrin and ferritin. Semin Hematol. 1998 Jan;35(1):35–54. [PubMed] [Google Scholar]
  131. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997 Jan 1;89(1):1–25. [PubMed] [Google Scholar]
  132. Ponka Prem. Rare causes of hereditary iron overload. Semin Hematol. 2002 Oct;39(4):249–262. doi: 10.1053/shem.2002.35638. [DOI] [PubMed] [Google Scholar]
  133. Poss K. D., Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10919–10924. doi: 10.1073/pnas.94.20.10919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Radisky D. C., Kaplan J. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem J. 1998 Nov 15;336(Pt 1):201–205. doi: 10.1042/bj3360201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Reif D. W., Simmons R. D. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys. 1990 Dec;283(2):537–541. doi: 10.1016/0003-9861(90)90680-w. [DOI] [PubMed] [Google Scholar]
  136. Richardson D. R., Baker E. The uptake of iron and transferrin by the human malignant melanoma cell. Biochim Biophys Acta. 1990 Jun 12;1053(1):1–12. doi: 10.1016/0167-4889(90)90018-9. [DOI] [PubMed] [Google Scholar]
  137. Richardson D. R., Baker E. Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: the effect of transferrin concentration, chelators, and metabolic probes on transferrin and iron uptake. J Cell Physiol. 1994 Oct;161(1):160–168. doi: 10.1002/jcp.1041610119. [DOI] [PubMed] [Google Scholar]
  138. Richardson D. R., Milnes K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: the mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood. 1997 Apr 15;89(8):3025–3038. [PubMed] [Google Scholar]
  139. Richardson D. R., Neumannova V., Nagy E., Ponka P. The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells. Blood. 1995 Oct 15;86(8):3211–3219. [PubMed] [Google Scholar]
  140. Richardson D. R., Neumannova V., Ponka P. Nitrogen monoxide decreases iron uptake from transferrin but does not mobilise iron from prelabelled neoplastic cells. Biochim Biophys Acta. 1995 May 12;1266(3):250–260. doi: 10.1016/0167-4889(95)00022-k. [DOI] [PubMed] [Google Scholar]
  141. Richardson D. R., Ponka P., Vyoral D. Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism. Blood. 1996 Apr 15;87(8):3477–3488. [PubMed] [Google Scholar]
  142. Richardson D. R. Role of ceruloplasmin and ascorbate in cellular iron release. J Lab Clin Med. 1999 Nov;134(5):454–465. doi: 10.1016/s0022-2143(99)90166-x. [DOI] [PubMed] [Google Scholar]
  143. Saito K., Nishisato T., Grasso J. A., Aisen P. Interaction of transferrin with iron-loaded rat peritoneal macrophages. Br J Haematol. 1986 Feb;62(2):275–286. doi: 10.1111/j.1365-2141.1986.tb02930.x. [DOI] [PubMed] [Google Scholar]
  144. Sato K., Balla J., Otterbein L., Smith R. N., Brouard S., Lin Y., Csizmadia E., Sevigny J., Robson S. C., Vercellotti G. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol. 2001 Mar 15;166(6):4185–4194. doi: 10.4049/jimmunol.166.6.4185. [DOI] [PubMed] [Google Scholar]
  145. Schmidt H. H., Hofmann H., Schindler U., Shutenko Z. S., Cunningham D. D., Feelisch M. No .NO from NO synthase. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14492–14497. doi: 10.1073/pnas.93.25.14492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Simon D. I., Mullins M. E., Jia L., Gaston B., Singel D. J., Stamler J. S. Polynitrosylated proteins: characterization, bioactivity, and functional consequences. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4736–4741. doi: 10.1073/pnas.93.10.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Stamler J. S., Jaraki O., Osborne J., Simon D. I., Keaney J., Vita J., Singel D., Valeri C. R., Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7674–7677. doi: 10.1073/pnas.89.16.7674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  150. Stone J. R., Marletta M. A. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry. 1994 May 10;33(18):5636–5640. doi: 10.1021/bi00184a036. [DOI] [PubMed] [Google Scholar]
  151. Suttner D. M., Dennery P. A. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J. 1999 Oct;13(13):1800–1809. doi: 10.1096/fasebj.13.13.1800. [DOI] [PubMed] [Google Scholar]
  152. Suzuki T., Nishio K., Tanabe S. The MRP family and anticancer drug metabolism. Curr Drug Metab. 2001 Dec;2(4):367–377. doi: 10.2174/1389200013338289. [DOI] [PubMed] [Google Scholar]
  153. Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]
  154. Theil E. C., Eisenstein R. S. Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J Biol Chem. 2000 Dec 29;275(52):40659–40662. doi: 10.1074/jbc.R000019200. [DOI] [PubMed] [Google Scholar]
  155. Thom S. R., Xu Y. A., Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure. Chem Res Toxicol. 1997 Sep;10(9):1023–1031. doi: 10.1021/tx970041h. [DOI] [PubMed] [Google Scholar]
  156. Thomas D. D., Liu X., Kantrow S. P., Lancaster J. R., Jr The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355–360. doi: 10.1073/pnas.011379598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Thorup C., Jones C. L., Gross S. S., Moore L. C., Goligorsky M. S. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol. 1999 Dec;277(6 Pt 2):F882–F889. doi: 10.1152/ajprenal.1999.277.6.F882. [DOI] [PubMed] [Google Scholar]
  158. Trinder D., Morgan E., Baker E. The mechanisms of iron uptake by fetal rat hepatocytes in culture. Hepatology. 1986 Sep-Oct;6(5):852–858. doi: 10.1002/hep.1840060508. [DOI] [PubMed] [Google Scholar]
  159. Trinder D., Zak O., Aisen P. Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology. 1996 Jun;23(6):1512–1520. doi: 10.1053/jhep.1996.v23.pm0008675172. [DOI] [PubMed] [Google Scholar]
  160. Tschugguel W., Schneeberger C., Unfried G., Bräutigam G., Wieser F., Czerwenka K., Vytiska-Binstorfer E., Kurz C., Weninger W., Mildner M. Die Rolle des Stickstoffmonoxids bei der Reproduktion. Gynakol Geburtshilfliche Rundsch. 1998;38(1):44–46. doi: 10.1159/000022226. [DOI] [PubMed] [Google Scholar]
  161. Vanin A. F., Men'shikov G. B., Moroz I. A., Mordvintcev P. I., Serezhenkov V. A., Burbaev D. Sh. The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochim Biophys Acta. 1992 Jun 29;1135(3):275–279. doi: 10.1016/0167-4889(92)90231-y. [DOI] [PubMed] [Google Scholar]
  162. Verma A., Hirsch D. J., Glatt C. E., Ronnett G. V., Snyder S. H. Carbon monoxide: a putative neural messenger. Science. 1993 Jan 15;259(5093):381–384. doi: 10.1126/science.7678352. [DOI] [PubMed] [Google Scholar]
  163. Vogt B. A., Alam J., Croatt A. J., Vercellotti G. M., Nath K. A. Acquired resistance to acute oxidative stress. Possible role of heme oxygenase and ferritin. Lab Invest. 1995 Apr;72(4):474–483. [PubMed] [Google Scholar]
  164. Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can J Physiol Pharmacol. 1998 Dec;76(12):1057–1065. doi: 10.1139/cjpp-76-12-1057. [DOI] [PubMed] [Google Scholar]
  165. Vyoral D., Hradilek A., Neuwirt J. Transferrin and iron distribution in subcellular fractions of K562 cells in the early stages of transferrin endocytosis. Biochim Biophys Acta. 1992 Oct 27;1137(2):148–154. doi: 10.1016/0167-4889(92)90196-i. [DOI] [PubMed] [Google Scholar]
  166. Wagner C. T., Durante W., Christodoulides N., Hellums J. D., Schafer A. I. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J Clin Invest. 1997 Aug 1;100(3):589–596. doi: 10.1172/JCI119569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Wardrop S. L., Watts R. N., Richardson D. R. Nitrogen monoxide activates iron regulatory protein 1 RNA-binding activity by two possible mechanisms: effect on the [4Fe-4S] cluster and iron mobilization from cells. Biochemistry. 2000 Mar 14;39(10):2748–2758. doi: 10.1021/bi991099t. [DOI] [PubMed] [Google Scholar]
  168. Watts R. N., Richardson D. R. Examination of the mechanism of action of nitrogen monoxide on iron uptake from transferrin. J Lab Clin Med. 2000 Aug;136(2):149–156. doi: 10.1067/mlc.2000.108152. [DOI] [PubMed] [Google Scholar]
  169. Watts R. N., Richardson D. R. Nitrogen monoxide (no) and glucose: unexpected links between energy metabolism and no-mediated iron mobilization from cells. J Biol Chem. 2000 Nov 14;276(7):4724–4732. doi: 10.1074/jbc.M006318200. [DOI] [PubMed] [Google Scholar]
  170. Watts Ralph N., Richardson Des R. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione-dependent manner. Eur J Biochem. 2002 Jul;269(14):3383–3392. doi: 10.1046/j.1432-1033.2002.02987.x. [DOI] [PubMed] [Google Scholar]
  171. Weaver L. K., Howe S., Hopkins R., Chan K. J. Carboxyhemoglobin half-life in carbon monoxide-poisoned patients treated with 100% oxygen at atmospheric pressure. Chest. 2000 Mar;117(3):801–808. doi: 10.1378/chest.117.3.801. [DOI] [PubMed] [Google Scholar]
  172. Weiss G., Goossen B., Doppler W., Fuchs D., Pantopoulos K., Werner-Felmayer G., Wachter H., Hentze M. W. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993 Sep;12(9):3651–3657. doi: 10.1002/j.1460-2075.1993.tb06039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Weiss G., Wachter H., Fuchs D. Linkage of cell-mediated immunity to iron metabolism. Immunol Today. 1995 Oct;16(10):495–500. doi: 10.1016/0167-5699(95)80034-4. [DOI] [PubMed] [Google Scholar]
  174. Weiss G., Werner-Felmayer G., Werner E. R., Grünewald K., Wachter H., Hentze M. W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994 Sep 1;180(3):969–976. doi: 10.1084/jem.180.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Willis D., Tomlinson A., Frederick R., Paul-Clark M. J., Willoughby D. A. Modulation of heme oxygenase activity in rat brain and spleen by inhibitors and donors of nitric oxide. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1152–1156. doi: 10.1006/bbrc.1995.2406. [DOI] [PubMed] [Google Scholar]
  176. Wood J., Garthwaite J. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology. 1994 Nov;33(11):1235–1244. doi: 10.1016/0028-3908(94)90022-1. [DOI] [PubMed] [Google Scholar]
  177. Xue L., Farrugia G., Miller S. M., Ferris C. D., Snyder S. H., Szurszewski J. H. Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1851–1855. doi: 10.1073/pnas.97.4.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., Ohta K., Kasahara Y., Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999 Jan;103(1):129–135. doi: 10.1172/JCI4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Yoshinaga T., Sassa S., Kappas A. The occurrence of molecular interactions among NADPH-cytochrome c reductase, heme oxygenase, and biliverdin reductase in heme degradation. J Biol Chem. 1982 Jul 10;257(13):7786–7793. [PubMed] [Google Scholar]
  180. Zai A., Rudd M. A., Scribner A. W., Loscalzo J. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest. 1999 Feb;103(3):393–399. doi: 10.1172/JCI4890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Zakhary R., Gaine S. P., Dinerman J. L., Ruat M., Flavahan N. A., Snyder S. H. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):795–798. doi: 10.1073/pnas.93.2.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Zakhary R., Poss K. D., Jaffrey S. R., Ferris C. D., Tonegawa S., Snyder S. H. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14848–14853. doi: 10.1073/pnas.94.26.14848. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES