Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):441–445. doi: 10.1042/BJ20021039

Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells.

Michael C Ashby 1, Ole H Petersen 1, Alexei V Tepikin 1
PMCID: PMC1223129  PMID: 12444927

Abstract

In pancreatic acinar cells, agonists evoke intracellular Ca(2+) transients which are initiated in the apical region of these polarized cells. There are contradictory experimental data concerning Ca(2+) release from ryanodine receptors (RyRs) in the apical region. In the present study, we have used low doses of ryanodine to open RyRs leading to the release of Ca(2+) from intracellular stores. Ryanodine causes Ca(2+) release that is initiated in the apical region of the cell but is dependent upon functional inositol 1,4,5-trisphosphate receptors (IP(3)Rs). These results suggests that co-ordinated release from co-localized RyRs and IP(3)Rs underlies the increased sensitivity of the apical region to initiation of intracellular Ca(2+) transients.

Full Text

The Full Text of this article is available as a PDF (154.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby Michael C., Craske Madeleine, Park Myoung Kyu, Gerasimenko Oleg V., Burgoyne Robert D., Petersen Ole H., Tepikin Alexei V. Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites: mechanism of unidirectional Ca2+ waves. J Cell Biol. 2002 Jul 15;158(2):283–292. doi: 10.1083/jcb.200112025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby Michael C., Tepikin Alexei V. Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev. 2002 Jul;82(3):701–734. doi: 10.1152/physrev.00006.2002. [DOI] [PubMed] [Google Scholar]
  3. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  4. Bolender R. P. Stereological study of pancreatic exocrine cells. Adv Cytopharmacol. 1974;2:99–106. [PubMed] [Google Scholar]
  5. Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
  6. Cancela J. M., Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 2000 Jun 1;19(11):2549–2557. doi: 10.1093/emboj/19.11.2549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cancela Jose M., Van Coppenolle Fabien, Galione Antony, Tepikin Alexei V., Petersen Ole H. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909–919. doi: 10.1093/emboj/21.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  9. Ehrlich B. E., Kaftan E., Bezprozvannaya S., Bezprozvanny I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol Sci. 1994 May;15(5):145–149. doi: 10.1016/0165-6147(94)90074-4. [DOI] [PubMed] [Google Scholar]
  10. Endo M., Tanaka M., Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34–36. doi: 10.1038/228034a0. [DOI] [PubMed] [Google Scholar]
  11. Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985 Dec;44(15):2970–2976. [PubMed] [Google Scholar]
  12. Fitzsimmons T. J., Gukovsky I., McRoberts J. A., Rodriguez E., Lai F. A., Pandol S. J. Multiple isoforms of the ryanodine receptor are expressed in rat pancreatic acinar cells. Biochem J. 2000 Oct 1;351(Pt 1):265–271. doi: 10.1042/0264-6021:3510265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fogarty K. E., Kidd J. F., Tuft D. A., Thorn P. Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells. J Physiol. 2000 Aug 1;526(Pt 3):515–526. doi: 10.1111/j.1469-7793.2000.t01-1-00515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells. Science. 1970 Jan 2;167(3914):58–59. doi: 10.1126/science.167.3914.58. [DOI] [PubMed] [Google Scholar]
  15. Hasselbach W., Migala A. Activation and inhibition of the calcium gate of sarcoplasmic reticulum by high-affinity ryanodine binding. FEBS Lett. 1987 Aug 31;221(1):119–123. doi: 10.1016/0014-5793(87)80364-2. [DOI] [PubMed] [Google Scholar]
  16. Imagawa T., Smith J. S., Coronado R., Campbell K. P. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem. 1987 Dec 5;262(34):16636–16643. [PubMed] [Google Scholar]
  17. Inui M., Saito A., Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem. 1987 Feb 5;262(4):1740–1747. [PubMed] [Google Scholar]
  18. Jenden D. J., Fairhurst A. S. The pharmacology of ryanodine. Pharmacol Rev. 1969 Mar;21(1):1–25. [PubMed] [Google Scholar]
  19. Kasai H., Augustine G. J. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature. 1990 Dec 20;348(6303):735–738. doi: 10.1038/348735a0. [DOI] [PubMed] [Google Scholar]
  20. Kasai H., Li Y. X., Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell. 1993 Aug 27;74(4):669–677. doi: 10.1016/0092-8674(93)90514-q. [DOI] [PubMed] [Google Scholar]
  21. Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
  22. Lattanzio F. A., Jr, Schlatterer R. G., Nicar M., Campbell K. P., Sutko J. L. The effects of ryanodine on passive calcium fluxes across sarcoplasmic reticulum membranes. J Biol Chem. 1987 Feb 25;262(6):2711–2718. [PubMed] [Google Scholar]
  23. Lee M. G., Xu X., Zeng W., Diaz J., Wojcikiewicz R. J., Kuo T. H., Wuytack F., Racymaekers L., Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765–15770. doi: 10.1074/jbc.272.25.15765. [DOI] [PubMed] [Google Scholar]
  24. Leite M. F., Dranoff J. A., Gao L., Nathanson M. H. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem J. 1999 Jan 15;337(Pt 2):305–309. [PMC free article] [PubMed] [Google Scholar]
  25. Leite M. Fatima, Burgstahler Angela D., Nathanson Michael H. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology. 2002 Feb;122(2):415–427. doi: 10.1053/gast.2002.30982. [DOI] [PubMed] [Google Scholar]
  26. Masumiya H., Li P., Zhang L., Chen S. R. Ryanodine sensitizes the Ca(2+) release channel (ryanodine receptor) to Ca(2+) activation. J Biol Chem. 2001 Aug 15;276(43):39727–39735. doi: 10.1074/jbc.M106557200. [DOI] [PubMed] [Google Scholar]
  27. Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
  28. Nathanson M. H., Burgstahler A. D., Fallon M. B. Multistep mechanism of polarized Ca2+ wave patterns in hepatocytes. Am J Physiol. 1994 Sep;267(3 Pt 1):G338–G349. doi: 10.1152/ajpgi.1994.267.3.G338. [DOI] [PubMed] [Google Scholar]
  29. Nishiyama M., Hong K., Mikoshiba K., Poo M. M., Kato K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 2000 Nov 30;408(6812):584–588. doi: 10.1038/35046067. [DOI] [PubMed] [Google Scholar]
  30. Ozawa T. Ryanodine-sensitive Ca(2+) release mechanism of rat pancreatic acinar cells is modulated by calmodulin. Biochim Biophys Acta. 1999 Dec 9;1452(3):254–262. doi: 10.1016/s0167-4889(99)00135-4. [DOI] [PubMed] [Google Scholar]
  31. Park M. K., Ashby M. C., Erdemli G., Petersen O. H., Tepikin A. V. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 2001 Apr 17;20(8):1863–1874. doi: 10.1093/emboj/20.8.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Park M. K., Petersen O. H., Tepikin A. V. The endoplasmic reticulum as one continuous Ca(2+) pool: visualization of rapid Ca(2+) movements and equilibration. EMBO J. 2000 Nov 1;19(21):5729–5739. doi: 10.1093/emboj/19.21.5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Park M. K., Tepikin A. V., Petersen O. H. The relationship between acetylcholine-evoked Ca(2+)-dependent current and the Ca2+ concentrations in the cytosol and the lumen of the endoplasmic reticulum in pancreatic acinar cells. Pflugers Arch. 1999 Nov;438(6):760–765. doi: 10.1007/s004249900128. [DOI] [PubMed] [Google Scholar]
  34. Pessah I. N., Waterhouse A. L., Casida J. E. The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun. 1985 Apr 16;128(1):449–456. doi: 10.1016/0006-291x(85)91699-7. [DOI] [PubMed] [Google Scholar]
  35. Petersen C. C., Toescu E. C., Petersen O. H. Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca2+ buffering. EMBO J. 1991 Mar;10(3):527–533. doi: 10.1002/j.1460-2075.1991.tb07979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Petersen O. H., Petersen C. C., Kasai H. Calcium and hormone action. Annu Rev Physiol. 1994;56:297–319. doi: 10.1146/annurev.ph.56.030194.001501. [DOI] [PubMed] [Google Scholar]
  37. Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Solovyova N., Veselovsky N., Toescu E. C., Verkhratsky A. Ca(2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca(2+)-induced Ca(2+) release triggered by physiological Ca(2+) entry. EMBO J. 2002 Feb 15;21(4):622–630. doi: 10.1093/emboj/21.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Straub S. V., Giovannucci D. R., Yule D. I. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria. J Gen Physiol. 2000 Oct;116(4):547–560. doi: 10.1085/jgp.116.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sutko J. L., Airey J. A., Welch W., Ruest L. The pharmacology of ryanodine and related compounds. Pharmacol Rev. 1997 Mar;49(1):53–98. [PubMed] [Google Scholar]
  41. Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  43. Tinel H., Cancela J. M., Mogami H., Gerasimenko J. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J. 1999 Sep 15;18(18):4999–5008. doi: 10.1093/emboj/18.18.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wakui M., Osipchuk Y. V., Petersen O. H. Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2(+)-induced Ca2+ release. Cell. 1990 Nov 30;63(5):1025–1032. doi: 10.1016/0092-8674(90)90505-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES