Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):223–231. doi: 10.1042/BJ20021269

The liver isoform of carnitine palmitoyltransferase 1 is not targeted to the endoplasmic reticulum.

Neil M Broadway 1, Richard J Pease 1, Graeme Birdsey 1, Majid Shayeghi 1, Nigel A Turner 1, E David Saggerson 1
PMCID: PMC1223134  PMID: 12401113

Abstract

Liver microsomal fractions contain a malonyl-CoA-inhibitable carnitine acyltransferase (CAT) activity. It has been proposed [Fraser, Corstorphine, Price and Zammit (1999) FEBS Lett. 446, 69-74] that this microsomal CAT activity is due to the liver form of carnitine palmitoyltransferase 1 (L-CPT1) being targeted to the endoplasmic reticulum (ER) membrane as well as to mitochondria, possibly by an N-terminal signal sequence [Cohen, Guillerault, Girard and Prip-Buus (2001) J. Biol. Chem. 276, 5403-5411]. COS-1 cells were transiently transfected to express a fusion protein in which enhanced green fluorescent protein was fused to the C-terminus of L-CPT1. Confocal microscopy showed that this fusion protein was localized to mitochondria, and possibly to peroxisomes, but not to the ER. cDNAs corresponding to truncated (amino acids 1-328) or full-length L-CPT1 were transcribed and translated in the presence of canine pancreatic microsomes. However, there was no evidence of authentic insertion of CPT1 into the ER membrane. Rat liver microsomal fractions purified by sucrose-density-gradient centrifugation contained an 88 kDa protein (p88) which was recognized by an anti-L-CPT1 antibody and by 2,4-dinitrophenol-etomoxiryl-CoA, a covalent inhibitor of L-CPT1. Abundance of p88 and malonyl-CoA-inhibitable CAT activity were increased approx. 3-fold by starvation for 24 h. Deoxycholate solubilized p88 and malonyl-CoA-inhibitable CAT activity from microsomes to approximately the same extent. The microsomal fraction contained porin, which, relative to total protein, was as abundant as in crude mitochondrial outer membranes fractions. It is concluded that L-CPT1 is not targeted to the ER membrane and that malonyl-CoA CAT in microsomal fractions is L-CPT1 that is derived from mitochondria, possibly from membrane contact sites.

Full Text

The Full Text of this article is available as a PDF (295.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo-Hashema K. A., Cake M. H., Power G. W., Clarke D. Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases. J Biol Chem. 1999 Dec 10;274(50):35577–35582. doi: 10.1074/jbc.274.50.35577. [DOI] [PubMed] [Google Scholar]
  2. Ardail D., Gasnier F., Lermé F., Simonot C., Louisot P., Gateau-Roesch O. Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J Biol Chem. 1993 Dec 5;268(34):25985–25992. [PubMed] [Google Scholar]
  3. Bhuiyan A. K., Murthy M. S., Pande S. V. Some properties of the malonyl-CoA sensitive carnitine long/medium chain acyltransferase activities of peroxisomes and microsomes of rat liver. Biochem Mol Biol Int. 1994 Oct;34(3):493–503. [PubMed] [Google Scholar]
  4. Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta. 1991 Nov 13;1071(3):291–312. doi: 10.1016/0304-4157(91)90018-r. [DOI] [PubMed] [Google Scholar]
  5. Broadway N. M., Gooding J. M., Saggerson E. D. Carnitine acyltransferases and associated transport processes in the endoplasmic reticulum. Missing links in the VLDL story? Adv Exp Med Biol. 1999;466:59–67. doi: 10.1007/0-306-46818-2_6. [DOI] [PubMed] [Google Scholar]
  6. Broadway N. M., Saggerson E. D. Effect of membrane environment on the activity and inhibitability by malonyl-CoA of the carnitine acyltransferase of hepatic microsomal membranes. Biochem J. 1997 Mar 1;322(Pt 2):435–440. doi: 10.1042/bj3220435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broadway N. M., Saggerson E. D. Inhibition of liver microsomal carnitine acyltransferases by sulphonylurea drugs. FEBS Lett. 1995 Sep 4;371(2):137–139. doi: 10.1016/0014-5793(95)00877-c. [DOI] [PubMed] [Google Scholar]
  8. Broadway N. M., Saggerson E. D. Solubilization and separation of two distinct carnitine acyltransferases from hepatic microsomes: characterization of the malonyl-CoA-sensitive enzyme. Biochem J. 1995 Sep 15;310(Pt 3):989–995. doi: 10.1042/bj3100989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi S. J., Oh D. H., Song C. S., Roy A. K., Chatterjee B. Molecular cloning and sequence analysis of the rat liver carnitine octanoyltransferase cDNA, its natural gene and the gene promoter. Biochim Biophys Acta. 1995 Nov 7;1264(2):215–222. doi: 10.1016/0167-4781(95)00146-8. [DOI] [PubMed] [Google Scholar]
  10. Chung C. D., Bieber L. L. Properties of the medium chain/long chain carnitine acyltransferase purified from rat liver microsomes. J Biol Chem. 1993 Feb 25;268(6):4519–4524. [PubMed] [Google Scholar]
  11. Cohen I., Guillerault F., Girard J., Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 contains an internal mitochondrial import signal and residues essential for folding of its C-terminal catalytic domain. J Biol Chem. 2000 Nov 21;276(7):5403–5411. doi: 10.1074/jbc.M009555200. [DOI] [PubMed] [Google Scholar]
  12. Cohen I., Kohl C., McGarry J. D., Girard J., Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. J Biol Chem. 1998 Nov 6;273(45):29896–29904. doi: 10.1074/jbc.273.45.29896. [DOI] [PubMed] [Google Scholar]
  13. Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol. 2000 Nov 15;529(Pt 1):11–21. doi: 10.1111/j.1469-7793.2000.00011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cronin C. N. cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase--Arg505 binds the carboxylate group of carnitine. Eur J Biochem. 1997 Aug 1;247(3):1029–1037. doi: 10.1111/j.1432-1033.1997.01029.x. [DOI] [PubMed] [Google Scholar]
  15. Elgersma Y., Kwast L., van den Berg M., Snyder W. B., Distel B., Subramani S., Tabak H. F. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J. 1997 Dec 15;16(24):7326–7341. doi: 10.1093/emboj/16.24.7326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Esser V., Kuwajima M., Britton C. H., Krishnan K., Foster D. W., McGarry J. D. Inhibitors of mitochondrial carnitine palmitoyltransferase I limit the action of proteases on the enzyme. Isolation and partial amino acid analysis of a truncated form of the rat liver isozyme. J Biol Chem. 1993 Mar 15;268(8):5810–5816. [PubMed] [Google Scholar]
  17. Fraser F., Corstorphine C. G., Price N. T., Zammit V. A. Evidence that carnitine palmitoyltransferase I (CPT I) is expressed in microsomes and peroxisomes of rat liver. Distinct immunoreactivity of the N-terminal domain of the microsomal protein. FEBS Lett. 1999 Mar 5;446(1):69–74. doi: 10.1016/s0014-5793(99)00179-9. [DOI] [PubMed] [Google Scholar]
  18. Fraser F., Corstorphine C. G., Zammit V. A. Subcellular distribution of mitochondrial carnitine palmitoyltransferase I in rat liver. Evidence for a distinctive N-terminal structure of the microsomal but not the peroxisomal enzyme. Adv Exp Med Biol. 1999;466:17–25. [PubMed] [Google Scholar]
  19. Fraser F., Corstorphine C. G., Zammit V. A. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane. Biochem J. 1997 May 1;323(Pt 3):711–718. doi: 10.1042/bj3230711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fraser F., Padovese R., Zammit V. A. Distinct kinetics of carnitine palmitoyltransferase i in contact sites and outer membranes of rat liver mitochondria. J Biol Chem. 2001 Mar 27;276(23):20182–20185. doi: 10.1074/jbc.M101078200. [DOI] [PubMed] [Google Scholar]
  21. Fraser F., Zammit V. A. Enrichment of carnitine palmitoyltransferases I and II in the contact sites of rat liver mitochondria. Biochem J. 1998 Jan 15;329(Pt 2):225–229. doi: 10.1042/bj3290225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fraser F., Zammit V. A. Submitochondrial and subcellular distributions of the carnitine-acylcarnitine carrier. FEBS Lett. 1999 Feb 19;445(1):41–44. doi: 10.1016/s0014-5793(99)00095-2. [DOI] [PubMed] [Google Scholar]
  23. Fujiki Y., Fowler S., Shio H., Hubbard A. L., Lazarow P. B. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes. J Cell Biol. 1982 Apr;93(1):103–110. doi: 10.1083/jcb.93.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ghadiminejad I., Saggerson E. D. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase. Biochem J. 1990 Sep 15;270(3):787–794. doi: 10.1042/bj2700787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gibbons G. F., Islam K., Pease R. J. Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 2000 Jan 3;1483(1):37–57. doi: 10.1016/s1388-1981(99)00182-1. [DOI] [PubMed] [Google Scholar]
  26. Hoppel C. L., Kerner J., Turkaly P., Turkaly J., Tandler B. The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. J Biol Chem. 1998 Sep 4;273(36):23495–23503. doi: 10.1074/jbc.273.36.23495. [DOI] [PubMed] [Google Scholar]
  27. Hoppel C., Kerner J., Turkaly P., Tandler B. Rat liver mitochondrial contact sites and carnitine palmitoyltransferase-I. Arch Biochem Biophys. 2001 Aug 15;392(2):321–325. doi: 10.1006/abbi.2001.2463. [DOI] [PubMed] [Google Scholar]
  28. Joyce C. W., Shelness G. S., Davis M. A., Lee R. G., Skinner K., Anderson R. A., Rudel L. L. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell. 2000 Nov;11(11):3675–3687. doi: 10.1091/mbc.11.11.3675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
  30. Lindén M., Andersson G., Gellerfors P., Nelson B. D. Subcellular distribution of rat liver porin. Biochim Biophys Acta. 1984 Feb 29;770(1):93–96. doi: 10.1016/0005-2736(84)90077-4. [DOI] [PubMed] [Google Scholar]
  31. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McBride H. M., Millar D. G., Li J. M., Shore G. C. A signal-anchor sequence selective for the mitochondrial outer membrane. J Cell Biol. 1992 Dec;119(6):1451–1457. doi: 10.1083/jcb.119.6.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  34. Mihara K., Blobel G., Sato R. In vitro synthesis and integration into mitochondria of porin, a major protein of the outer mitochondrial membrane of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7102–7106. doi: 10.1073/pnas.79.23.7102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murthy M. S., Bieber L. L. Purification of the medium-chain/long-chain (COT/CPT) carnitine acyltransferase of rat liver microsomes. Protein Expr Purif. 1992 Feb;3(1):75–79. doi: 10.1016/1046-5928(92)90059-6. [DOI] [PubMed] [Google Scholar]
  36. Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
  37. Ono H., Tuboi S. Integration of porin synthesized in vitro into outer mitochondrial membranes. Eur J Biochem. 1987 Nov 2;168(3):509–514. doi: 10.1111/j.1432-1033.1987.tb13447.x. [DOI] [PubMed] [Google Scholar]
  38. Owen M. R., Corstorphine C. C., Zammit V. A. Overt and latent activities of diacylglycerol acytransferase in rat liver microsomes: possible roles in very-low-density lipoprotein triacylglycerol secretion. Biochem J. 1997 Apr 1;323(Pt 1):17–21. doi: 10.1042/bj3230017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prip-Buus C., Cohen I., Kohl C., Esser V., McGarry J. D., Girard J. Topological and functional analysis of the rat liver carnitine palmitoyltransferase 1 expressed in Saccharomyces cerevisiae. FEBS Lett. 1998 Jun 12;429(2):173–178. doi: 10.1016/s0014-5793(98)00584-5. [DOI] [PubMed] [Google Scholar]
  40. Sakaguchi M., Hachiya N., Mihara K., Omura T. Mitochondrial porin can be translocated across both endoplasmic reticulum and mitochondrial membranes. J Biochem. 1992 Aug;112(2):243–248. doi: 10.1093/oxfordjournals.jbchem.a123884. [DOI] [PubMed] [Google Scholar]
  41. Shepherd J. C., Schumacher T. N., Ashton-Rickardt P. G., Imaeda S., Ploegh H. L., Janeway C. A., Jr, Tonegawa S. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell. 1993 Aug 13;74(3):577–584. doi: 10.1016/0092-8674(93)80058-m. [DOI] [PubMed] [Google Scholar]
  42. Singh H., Beckman K., Poulos A. Evidence of two catalytically active carnitine medium/long chain acyltransferases in rat liver peroxisomes. J Lipid Res. 1996 Dec;37(12):2616–2626. [PubMed] [Google Scholar]
  43. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  44. Zammit V. A. Carnitine acyltransferases: functional significance of subcellular distribution and membrane topology. Prog Lipid Res. 1999 May;38(3):199–224. doi: 10.1016/s0163-7827(99)00002-8. [DOI] [PubMed] [Google Scholar]
  45. van der Leij F. R., Kram A. M., Bartelds B., Roelofsen H., Smid G. B., Takens J., Zammit V. A., Kuipers J. R. Cytological evidence that the C-terminus of carnitine palmitoyltransferase I is on the cytosolic face of the mitochondrial outer membrane. Biochem J. 1999 Aug 1;341(Pt 3):777–784. doi: 10.1042/0264-6021:3410777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES