Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):35–46. doi: 10.1042/BJ20020140

Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae.

Lorenza Trabalzini 1, Alessandro Paffetti 1, Andrea Scaloni 1, Fabio Talamo 1, Elisa Ferro 1, Grazietta Coratza 1, Lucia Bovalini 1, Paola Lusini 1, Paola Martelli 1, Annalisa Santucci 1
PMCID: PMC1223135  PMID: 12401115

Abstract

We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identification, the proteins representing the S. cerevisiae proteomic response to fermentation stresses were divided into three classes: repressed proteins, induced proteins and autoproteolysed proteins. In an overall view, the proteome adaptation of S. cerevisiae at the time of glucose exhaustion seems to be directed mainly against the effects of ethanol, causing both hyperosmolarity and oxidative responses. Stress-induced autoproteolysis is directed mainly towards specific isoforms of glycolytic enzymes. Through the use of a wild-type S. cerevisiae strain and PMSF, a specific inhibitor of vacuolar proteinase B, we could also distinguish the specific contributions of the vacuole and the proteasome to the autoproteolytic process.

Full Text

The Full Text of this article is available as a PDF (329.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre H., Ansanay-Galeote V., Dequin S., Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 2001 Jun 1;498(1):98–103. doi: 10.1016/s0014-5793(01)02503-0. [DOI] [PubMed] [Google Scholar]
  2. Ashe M. P., De Long S. K., Sachs A. B. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell. 2000 Mar;11(3):833–848. doi: 10.1091/mbc.11.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boucherie H. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J Bacteriol. 1985 Jan;161(1):385–392. doi: 10.1128/jb.161.1.385-392.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun E. L., Fuge E. K., Padilla P. A., Werner-Washburne M. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. J Bacteriol. 1996 Dec;178(23):6865–6872. doi: 10.1128/jb.178.23.6865-6872.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cereghino J. L., Marcusson E. G., Emr S. D. The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization. Mol Biol Cell. 1995 Sep;6(9):1089–1102. doi: 10.1091/mbc.6.9.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherest H., Surdin-Kerjan Y. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics. 1992 Jan;130(1):51–58. doi: 10.1093/genetics/130.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corson L. B., Folmer J., Strain J. J., Culotta V. C., Cleveland D. W. Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem. 1999 Sep 24;274(39):27590–27596. doi: 10.1074/jbc.274.39.27590. [DOI] [PubMed] [Google Scholar]
  8. Costanzo M. C., Crawford M. E., Hirschman J. E., Kranz J. E., Olsen P., Robertson L. S., Skrzypek M. S., Braun B. R., Hopkins K. L., Kondu P. YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 2001 Jan 1;29(1):75–79. doi: 10.1093/nar/29.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dice J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990 Aug;15(8):305–309. doi: 10.1016/0968-0004(90)90019-8. [DOI] [PubMed] [Google Scholar]
  10. Dwight Selina S., Harris Midori A., Dolinski Kara, Ball Catherine A., Binkley Gail, Christie Karen R., Fisk Dianna G., Issel-Tarver Laurie, Schroeder Mark, Sherlock Gavin. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res. 2002 Jan 1;30(1):69–72. doi: 10.1093/nar/30.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Egner R., Thumm M., Straub M., Simeon A., Schüller H. J., Wolf D. H. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 25;268(36):27269–27276. [PubMed] [Google Scholar]
  12. François J., Parrou J. L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001 Jan;25(1):125–145. doi: 10.1111/j.1574-6976.2001.tb00574.x. [DOI] [PubMed] [Google Scholar]
  13. Futcher B., Latter G. I., Monardo P., McLaughlin C. S., Garrels J. I. A sampling of the yeast proteome. Mol Cell Biol. 1999 Nov;19(11):7357–7368. doi: 10.1128/mcb.19.11.7357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrels J. I., McLaughlin C. S., Warner J. R., Futcher B., Latter G. I., Kobayashi R., Schwender B., Volpe T., Anderson D. S., Mesquita-Fuentes R. Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis. 1997 Aug;18(8):1347–1360. doi: 10.1002/elps.1150180810. [DOI] [PubMed] [Google Scholar]
  15. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B., Labarre J. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem. 1998 Aug 28;273(35):22480–22489. doi: 10.1074/jbc.273.35.22480. [DOI] [PubMed] [Google Scholar]
  16. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  17. Gygi S. P., Rochon Y., Franza B. R., Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999 Mar;19(3):1720–1730. doi: 10.1128/mcb.19.3.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim J., Klionsky D. J. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem. 2000;69:303–342. doi: 10.1146/annurev.biochem.69.1.303. [DOI] [PubMed] [Google Scholar]
  19. Larsen M. R., Larsen P. M., Fey S. J., Roepstorff P. Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis. 2001 Feb;22(3):566–575. doi: 10.1002/1522-2683(200102)22:3<566::AID-ELPS566>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  20. Lashkari D. A., DeRisi J. L., McCusker J. H., Namath A. F., Gentile C., Hwang S. Y., Brown P. O., Davis R. W. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13057–13062. doi: 10.1073/pnas.94.24.13057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee D. H., Goldberg A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998 Oct;8(10):397–403. doi: 10.1016/s0962-8924(98)01346-4. [DOI] [PubMed] [Google Scholar]
  22. Liu X. D., Morano K. A., Thiele D. J. The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem. 1999 Sep 17;274(38):26654–26660. doi: 10.1074/jbc.274.38.26654. [DOI] [PubMed] [Google Scholar]
  23. Marsich E., Bandiera A., Tell G., Scaloni A., Manzini G. A chicken hnRNP of the A/B family recognizes the single-stranded d(CCCTAA)(n) telomeric repeated motif. Eur J Biochem. 2001 Jan;268(1):139–148. doi: 10.1046/j.1432-1327.2001.01860.x. [DOI] [PubMed] [Google Scholar]
  24. Martínez-Rodriguez A. J., Carrascosa A. V., Polo M. C. Release of nitrogen compounds to the extracellular medium by three strains of Saccharomyces cerevisiae during induced autolysis in a model wine system. Int J Food Microbiol. 2001 Aug 15;68(1-2):155–160. doi: 10.1016/s0168-1605(01)00486-x. [DOI] [PubMed] [Google Scholar]
  25. Martínez-Rodríguez A. J., Polo M. C., Carrascosa A. V. Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines. Int J Food Microbiol. 2001 Dec 4;71(1):45–51. doi: 10.1016/s0168-1605(01)00554-2. [DOI] [PubMed] [Google Scholar]
  26. Martínez-Rodríguez A. J., Polo M. C. Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J Agric Food Chem. 2000 Apr;48(4):1081–1085. doi: 10.1021/jf991047a. [DOI] [PubMed] [Google Scholar]
  27. Mauricio J. C., Valero E., Millán C., Ortega J. M. Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J Agric Food Chem. 2001 Jul;49(7):3310–3315. doi: 10.1021/jf010005v. [DOI] [PubMed] [Google Scholar]
  28. Norbeck J., Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem. 1997 Feb 28;272(9):5544–5554. doi: 10.1074/jbc.272.9.5544. [DOI] [PubMed] [Google Scholar]
  29. Norbeck J., Blomberg A. The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast. 2000 Jan 30;16(2):121–137. doi: 10.1002/(SICI)1097-0061(20000130)16:2<121::AID-YEA511>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  30. Norbeck J., Pâhlman A. K., Akhtar N., Blomberg A., Adler L. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1996 Jun 7;271(23):13875–13881. doi: 10.1074/jbc.271.23.13875. [DOI] [PubMed] [Google Scholar]
  31. Ono B. I., Hazu T., Yoshida S., Kawato T., Shinoda S., Brzvwczy J., Paszewski A. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast. 1999 Sep 30;15(13):1365–1375. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1365::AID-YEA468>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  32. Orlowski M. Selective activation of the 20 S proteasome (multicatalytic proteinase complex) by histone h3. Biochemistry. 2001 Dec 18;40(50):15318–15326. doi: 10.1021/bi0116240. [DOI] [PubMed] [Google Scholar]
  33. Pahlman A. K., Granath K., Ansell R., Hohmann S., Adler L. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem. 2000 Oct 31;276(5):3555–3563. doi: 10.1074/jbc.M007164200. [DOI] [PubMed] [Google Scholar]
  34. Park J. I., Grant C. M., Davies M. J., Dawes I. W. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J Biol Chem. 1998 Sep 4;273(36):22921–22928. doi: 10.1074/jbc.273.36.22921. [DOI] [PubMed] [Google Scholar]
  35. Parrou J. L., Enjalbert B., Plourde L., Bauche A., Gonzalez B., François J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 1999 Feb;15(3):191–203. doi: 10.1002/(SICI)1097-0061(199902)15:3<191::AID-YEA358>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  36. Parrou J. L., François J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997 May 15;248(1):186–188. doi: 10.1006/abio.1997.2138. [DOI] [PubMed] [Google Scholar]
  37. Parrou J. L., Teste M. A., François J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology. 1997 Jun;143(Pt 6):1891–1900. doi: 10.1099/00221287-143-6-1891. [DOI] [PubMed] [Google Scholar]
  38. Pereira M. D., Eleutherio E. C., Panek A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 2001 Jul 16;1:11–11. doi: 10.1186/1471-2180-1-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Santucci A., Trabalzini L., Bovalini L., Ferro E., Neri P., Martelli P. Differences between predicted and observed sequences in Saccharomyces cerevisiae. Electrophoresis. 2000 Nov;21(17):3717–3723. doi: 10.1002/1522-2683(200011)21:17<3717::AID-ELPS3717>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  40. Satyanarayana C., Schröder-Köhne S., Craig E. A., Schu P. V., Horst M. Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett. 2000 Mar 31;470(3):232–238. doi: 10.1016/s0014-5793(00)01324-7. [DOI] [PubMed] [Google Scholar]
  41. Spiropoulos A., Bisson L. F. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2000 Oct;66(10):4421–4426. doi: 10.1128/aem.66.10.4421-4426.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. doi: 10.1083/jcb.119.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000 Feb 10;403(6770):623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
  44. Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R. J. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell. 2000 Oct;11(10):3425–3439. doi: 10.1091/mbc.11.10.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vido K., Spector D., Lagniel G., Lopez S., Toledano M. B., Labarre J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem. 2000 Nov 14;276(11):8469–8474. doi: 10.1074/jbc.M008708200. [DOI] [PubMed] [Google Scholar]
  46. Wang J., Liu W., Uno T., Tonozuka H., Mitsui K., Tsurugi K. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000 Aug 1;189(1):9–13. doi: 10.1111/j.1574-6968.2000.tb09198.x. [DOI] [PubMed] [Google Scholar]
  47. Werner-Washburne M., Becker J., Kosic-Smithers J., Craig E. A. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol. 1989 May;171(5):2680–2688. doi: 10.1128/jb.171.5.2680-2688.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wodicka L., Dong H., Mittmann M., Ho M. H., Lockhart D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997 Dec;15(13):1359–1367. doi: 10.1038/nbt1297-1359. [DOI] [PubMed] [Google Scholar]
  49. van Hoek P, van Dijken JP, Pronk JT. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol. 2000 Jun 1;26(9-10):724–736. doi: 10.1016/s0141-0229(00)00164-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES