Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):91–100. doi: 10.1042/BJ20021462

Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation.

George Thom 1, Nicola Minshall 1, Anna Git 1, Joanna Argasinska 1, Nancy Standart 1
PMCID: PMC1223136  PMID: 12401129

Abstract

Cytoplasmic polyadenylation-element-binding protein (CPEB) is a well-characterized and important regulator of translation of maternal mRNA in early development in organisms ranging from worms, flies and clams to frogs and mice. Previous studies provided evidence that clam and Xenopus CPEB are hyperphosphorylated at germinal vesicle breakdown (GVBD) by cdc2 kinase, and degraded shortly after. To examine the conserved features of CPEB that mediate its modification during meiotic maturation, we microinjected mRNA encoding wild-type and mutated clam CPEB into Xenopus oocytes that were subsequently allowed to mature with progesterone. We observed that (i) ectopically expressed clam CPEB is phosphorylated at GVBD and subsequently degraded, mirroring the fate of the endogenous Xenopus CPEB protein, (ii) mutation of nine Ser/Thr Pro-directed kinase sites prevents phosphorylation and degradation and (iii) deletion of the PEST box, and to a lesser extent of the putative cyclin destruction box, generates a stable and phosphorylated version of CPEB. We conclude that phosphorylation of both consensus and non-consensus sites by cdc2 kinase targets clam CPEB for PEST-mediated destruction. We also show that phosphorylation of CPEB mediates its dissociation from ribonucleoprotein complexes, prior to degradation. Our findings reinforce results obtained in Xenopus, and have implications for CPEB from other invertebrates including Drosophila, Caenorhabditis elegans and Aplysia, which lack PEST boxes.

Full Text

The Full Text of this article is available as a PDF (422.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bally-Cuif L., Schatz W. J., Ho R. K. Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev. 1998 Sep;77(1):31–47. doi: 10.1016/s0925-4773(98)00109-9. [DOI] [PubMed] [Google Scholar]
  2. Chang J. S., Tan L., Wolf M. R., Schedl P. Functioning of the Drosophila orb gene in gurken mRNA localization and translation. Development. 2001 Aug;128(16):3169–3177. doi: 10.1242/dev.128.16.3169. [DOI] [PubMed] [Google Scholar]
  3. Colgan D. F., Murthy K. G., Zhao W., Prives C., Manley J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 1998 Feb 16;17(4):1053–1062. doi: 10.1093/emboj/17.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coller J. M., Tucker M., Sheth U., Valencia-Sanchez M. A., Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001 Dec;7(12):1717–1727. doi: 10.1017/s135583820101994x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dickson K. S., Thompson S. R., Gray N. K., Wickens M. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem. 2001 Sep 10;276(45):41810–41816. doi: 10.1074/jbc.M103030200. [DOI] [PubMed] [Google Scholar]
  6. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  7. Fischer Nicole, Weis Karsten. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 2002 Jun 3;21(11):2788–2797. doi: 10.1093/emboj/21.11.2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gebauer F., Richter J. D. Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14602–14607. doi: 10.1073/pnas.93.25.14602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geley S., Kramer E., Gieffers C., Gannon J., Peters J. M., Hunt T. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol. 2001 Apr 2;153(1):137–148. doi: 10.1083/jcb.153.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Groisman I., Huang Y. S., Mendez R., Cao Q., Theurkauf W., Richter J. D. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000 Oct 27;103(3):435–447. doi: 10.1016/s0092-8674(00)00135-5. [DOI] [PubMed] [Google Scholar]
  11. Hake L. E., Mendez R., Richter J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol. 1998 Feb;18(2):685–693. doi: 10.1128/mcb.18.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hake L. E., Richter J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994 Nov 18;79(4):617–627. doi: 10.1016/0092-8674(94)90547-9. [DOI] [PubMed] [Google Scholar]
  13. Hodgman R., Tay J., Mendez R., Richter J. D. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 2001 Jul;128(14):2815–2822. doi: 10.1242/dev.128.14.2815. [DOI] [PubMed] [Google Scholar]
  14. Jin S. W., Kimble J., Ellis R. E. Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev Biol. 2001 Jan 15;229(2):537–553. doi: 10.1006/dbio.2000.9993. [DOI] [PubMed] [Google Scholar]
  15. Katsu Y., Minshall N., Nagahama Y., Standart N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev Biol. 1999 May 1;209(1):186–199. doi: 10.1006/dbio.1999.9247. [DOI] [PubMed] [Google Scholar]
  16. Kraemer B., Crittenden S., Gallegos M., Moulder G., Barstead R., Kimble J., Wickens M. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol. 1999 Sep 23;9(18):1009–1018. doi: 10.1016/s0960-9822(99)80449-7. [DOI] [PubMed] [Google Scholar]
  17. Ladomery M., Wade E., Sommerville J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 1997 Mar 1;25(5):965–973. doi: 10.1093/nar/25.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lantz V., Ambrosio L., Schedl P. The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development. 1992 May;115(1):75–88. doi: 10.1242/dev.115.1.75. [DOI] [PubMed] [Google Scholar]
  19. Luitjens C., Gallegos M., Kraemer B., Kimble J., Wickens M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 2000 Oct 15;14(20):2596–2609. doi: 10.1101/gad.831700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mendez R., Hake L. E., Andresson T., Littlepage L. E., Ruderman J. V., Richter J. D. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 2000 Mar 16;404(6775):302–307. doi: 10.1038/35005126. [DOI] [PubMed] [Google Scholar]
  21. Mendez R., Murthy K. G., Ryan K., Manley J. L., Richter J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000 Nov;6(5):1253–1259. doi: 10.1016/s1097-2765(00)00121-0. [DOI] [PubMed] [Google Scholar]
  22. Mendez Raul, Barnard Daron, Richter Joel D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002 Apr 2;21(7):1833–1844. doi: 10.1093/emboj/21.7.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minshall N., Thom G., Standart N. A conserved role of a DEAD box helicase in mRNA masking. RNA. 2001 Dec;7(12):1728–1742. doi: 10.1017/s135583820101158x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minshall N., Walker J., Dale M., Standart N. Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA. 1999 Jan;5(1):27–38. doi: 10.1017/s1355838299981220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray M. T., Schiller D. L., Franke W. W. Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):11–15. doi: 10.1073/pnas.89.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakahata S., Katsu Y., Mita K., Inoue K., Nagahama Y., Yamashita M. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol Chem. 2001 Mar 29;276(24):20945–20953. doi: 10.1074/jbc.M010528200. [DOI] [PubMed] [Google Scholar]
  27. Nakamura A., Amikura R., Hanyu K., Kobayashi S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 2001 Sep;128(17):3233–3242. doi: 10.1242/dev.128.17.3233. [DOI] [PubMed] [Google Scholar]
  28. Nigg E. A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 1995 Jun;17(6):471–480. doi: 10.1002/bies.950170603. [DOI] [PubMed] [Google Scholar]
  29. Paris J., Swenson K., Piwnica-Worms H., Richter J. D. Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kD CPE-binding protein. Genes Dev. 1991 Sep;5(9):1697–1708. doi: 10.1101/gad.5.9.1697. [DOI] [PubMed] [Google Scholar]
  30. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995 Jun 15;308(Pt 3):697–711. doi: 10.1042/bj3080697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rechsteiner M., Rogers S. W. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996 Jul;21(7):267–271. [PubMed] [Google Scholar]
  32. Reverte C. G., Ahearn M. D., Hake L. E. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol. 2001 Mar 15;231(2):447–458. doi: 10.1006/dbio.2001.0153. [DOI] [PubMed] [Google Scholar]
  33. Sonoda J., Wharton R. P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 1999 Oct 15;13(20):2704–2712. doi: 10.1101/gad.13.20.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stebbins-Boaz B., Cao Q., de Moor C. H., Mendez R., Richter J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999 Dec;4(6):1017–1027. doi: 10.1016/s1097-2765(00)80230-0. [DOI] [PubMed] [Google Scholar]
  35. Stutz A., Conne B., Huarte J., Gubler P., Völkel V., Flandin P., Vassalli J. D. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 1998 Aug 15;12(16):2535–2548. doi: 10.1101/gad.12.16.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tay J., Hodgman R., Richter J. D. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev Biol. 2000 May 1;221(1):1–9. doi: 10.1006/dbio.2000.9669. [DOI] [PubMed] [Google Scholar]
  37. Tay J., Richter J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell. 2001 Aug;1(2):201–213. doi: 10.1016/s1534-5807(01)00025-9. [DOI] [PubMed] [Google Scholar]
  38. Varnum S. M., Hurney C. A., Wormington W. M. Maturation-specific deadenylation in Xenopus oocytes requires nuclear and cytoplasmic factors. Dev Biol. 1992 Oct;153(2):283–290. doi: 10.1016/0012-1606(92)90113-u. [DOI] [PubMed] [Google Scholar]
  39. Wakiyama M., Imataka H., Sonenberg N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol. 2000 Sep 21;10(18):1147–1150. doi: 10.1016/s0960-9822(00)00701-6. [DOI] [PubMed] [Google Scholar]
  40. Walker J., Dale M., Standart N. Unmasking mRNA in clam oocytes: role of phosphorylation of a 3' UTR masking element-binding protein at fertilization. Dev Biol. 1996 Jan 10;173(1):292–305. doi: 10.1006/dbio.1996.0024. [DOI] [PubMed] [Google Scholar]
  41. Walker J., Minshall N., Hake L., Richter J., Standart N. The clam 3' UTR masking element-binding protein p82 is a member of the CPEB family. RNA. 1999 Jan;5(1):14–26. doi: 10.1017/s1355838299981219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Welk J. F., Charlesworth A., Smith G. D., MacNicol A. M. Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene. 2001 Jan 24;263(1-2):113–120. doi: 10.1016/s0378-1119(00)00588-6. [DOI] [PubMed] [Google Scholar]
  43. Wells S. E., Hillner P. E., Vale R. D., Sachs A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell. 1998 Jul;2(1):135–140. doi: 10.1016/s1097-2765(00)80122-7. [DOI] [PubMed] [Google Scholar]
  44. Wickens Marvin, Bernstein David S., Kimble Judith, Parker Roy. A PUF family portrait: 3'UTR regulation as a way of life. Trends Genet. 2002 Mar;18(3):150–157. doi: 10.1016/s0168-9525(01)02616-6. [DOI] [PubMed] [Google Scholar]
  45. Zachariae W., Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 1999 Aug 15;13(16):2039–2058. doi: 10.1101/gad.13.16.2039. [DOI] [PubMed] [Google Scholar]
  46. de Moor C. H., Richter J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 1999 Apr 15;18(8):2294–2303. doi: 10.1093/emboj/18.8.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES