Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):47–56. doi: 10.1042/BJ20021256

Control of glucose phosphorylation in L6 myotubes by compartmentalization, hexokinase, and glucose transport.

Richard R Whitesell 1, Hossein Ardehali 1, Richard L Printz 1, Joseph M Beechem 1, Susan M Knobel 1, David W Piston 1, Daryl K Granner 1, Wieb Van Der Meer 1, Laureta M Perriott 1, James M May 1
PMCID: PMC1223141  PMID: 12410639

Abstract

In muscle, insulin enhances influx of glucose and its conversion to glucose 6-phosphate (G6P) by hexokinase (HK). While effects of insulin on glucose transport have been demonstrated, its effect on the activity of HK of cells has not. In L6 myotubes treated for 24 h with insulin there was increased expression of the HK isoform, HKII, and increased glucose phosphorylation without a concomitant increase in glucose transport, indirectly suggesting that phosphorylation of glucose was a target of insulin action [Osawa, Printz, Whitesell and Granner (1995) Diabetes 44, 1426-1432]. In the present work the same treatment led to a 2-fold rise in G6P, suggesting that transport and/or HK were important targets of insulin action. We used a method to identify the site of rate control involving the specificity of phosphorylation towards 2-deoxy-[1-14C]glucose and D-[2-3H]glucose. Glucose transport does not greatly discriminate between these two tracers while HK shows increased specificity for glucose. Specificity of the glucose phosphorylation of the cells increased with addition of insulin and when extracellular glucose was raised. Specificity was reduced at low glucose concentrations or when the inhibitor of transport, cytochalasin B, was added. We conclude that transport and HK share nearly equal control over glucose phosphorylation in these cells. A computer program was used to test models for compatibility with the different types of experiments. The predicted intracellular glucose and transport rates associated with phosphorylation activity were lower than their measured values for the whole cell. In the most likely model, 15+/-4% of the glucose transporters serve a proportionate volume of the cytoplasm. Insulin activation of glucose phosphorylation might then result from stimulation of these transporters together with HK recruitment or relief from inhibition by G6P.

Full Text

The Full Text of this article is available as a PDF (209.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardehali H., Yano Y., Printz R. L., Koch S., Whitesell R. R., May J. M., Granner D. K. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J Biol Chem. 1996 Jan 26;271(4):1849–1852. doi: 10.1074/jbc.271.4.1849. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft S. J., Stubbs M. The glucose sensor in HIT cells is the glucose transporter. FEBS Lett. 1987 Jul 27;219(2):311–315. doi: 10.1016/0014-5793(87)80242-9. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  4. Bennett B. D., Jetton T. L., Ying G., Magnuson M. A., Piston D. W. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem. 1996 Feb 16;271(7):3647–3651. doi: 10.1074/jbc.271.7.3647. [DOI] [PubMed] [Google Scholar]
  5. Bessman S. P. A molecular basis for the mechanism of insulin action. Am J Med. 1966 May;40(5):740–749. doi: 10.1016/0002-9343(66)90155-0. [DOI] [PubMed] [Google Scholar]
  6. Bessman S. P., Geiger P. J. Compartmentation of hexokinase and creatine phosphokinase, cellular regulation, and insulin action. Curr Top Cell Regul. 1980;16:55–86. doi: 10.1016/b978-0-12-152816-4.50007-8. [DOI] [PubMed] [Google Scholar]
  7. Bonadonna R. C., Del Prato S., Bonora E., Saccomani M. P., Gulli G., Natali A., Frascerra S., Pecori N., Ferrannini E., Bier D. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996 Jul;45(7):915–925. doi: 10.2337/diab.45.7.915. [DOI] [PubMed] [Google Scholar]
  8. Bunow B. Chemical reactions and membranes: a macroscopic basis for facilitated transport, chemiosmosis and active transport. Part I: Linear analysis. J Theor Biol. 1978 Nov 7;75(1):51–78. doi: 10.1016/0022-5193(78)90202-3. [DOI] [PubMed] [Google Scholar]
  9. Estrada D. E., Ewart H. S., Tsakiridis T., Volchuk A., Ramlal T., Tritschler H., Klip A. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes. 1996 Dec;45(12):1798–1804. doi: 10.2337/diab.45.12.1798. [DOI] [PubMed] [Google Scholar]
  10. Fell D. A., Sauro H. M. Metabolic control analysis by computer: progress and prospects. Biomed Biochim Acta. 1990;49(8-9):811–816. [PubMed] [Google Scholar]
  11. Gots R. E., Bessman S. P. An ultrasensitive radioassay for hexokinase. Anal Biochem. 1973 Mar;52(1):272–279. doi: 10.1016/0003-2697(73)90349-7. [DOI] [PubMed] [Google Scholar]
  12. Grossbard L., Schimke R. T. Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem. 1966 Aug 10;241(15):3546–3560. [PubMed] [Google Scholar]
  13. Halseth A. E., Bracy D. P., Wasserman D. H. Functional limitations to glucose uptake in muscles comprised of different fiber types. Am J Physiol Endocrinol Metab. 2001 Jun;280(6):E994–E999. doi: 10.1152/ajpendo.2001.280.6.E994. [DOI] [PubMed] [Google Scholar]
  14. Jacobs A. E., Oosterhof A., Veerkamp J. H. 2-Deoxy-D-glucose uptake in cultured human muscle cells. Biochim Biophys Acta. 1990 Mar 9;1051(3):230–236. doi: 10.1016/0167-4889(90)90127-y. [DOI] [PubMed] [Google Scholar]
  15. Katz J., Dunn A. Glucose-2-t as a tracer for glucose metabolism. Biochemistry. 1967 Jan;6(1):1–5. doi: 10.1021/bi00853a001. [DOI] [PubMed] [Google Scholar]
  16. Klip A., Gumà A., Ramlal T., Bilan P. J., Lam L., Leiter L. A. Stimulation of hexose transport by metformin in L6 muscle cells in culture. Endocrinology. 1992 May;130(5):2535–2544. doi: 10.1210/endo.130.5.1572281. [DOI] [PubMed] [Google Scholar]
  17. Klip A. Regulation of glucose transport by insulin and non-hormonal factors. Life Sci. 1982 Dec 6;31(23):2537–2548. doi: 10.1016/0024-3205(82)90726-3. [DOI] [PubMed] [Google Scholar]
  18. Kosow D. P., Rose I. A. Ascites tumor mitochondrial hexokinase II. Effect of binding on kinetic properties. J Biol Chem. 1968 Jul 10;243(13):3623–3630. [PubMed] [Google Scholar]
  19. LEFEVRE P. G. Sugar transport in the red blood cell: structure-activity relationships in substrates and antagonists. Pharmacol Rev. 1961 Mar;13:39–70. [PubMed] [Google Scholar]
  20. Minaschek G., Gröschel-Stewart U., Blum S., Bereiter-Hahn J. Microcompartmentation of glycolytic enzymes in cultured cells. Eur J Cell Biol. 1992 Aug;58(2):418–428. [PubMed] [Google Scholar]
  21. Osawa H., Printz R. L., Whitesell R. R., Granner D. K. Regulation of hexokinase II gene transcription and glucose phosphorylation by catecholamines, cyclic AMP, and insulin. Diabetes. 1995 Dec;44(12):1426–1432. doi: 10.2337/diab.44.12.1426. [DOI] [PubMed] [Google Scholar]
  22. Regen D. M., Tarpley H. L. Anomalous transport kinetics and the glucose carrier hypothesis. Biochim Biophys Acta. 1974 Mar 15;339(2):218–233. doi: 10.1016/0005-2736(74)90320-4. [DOI] [PubMed] [Google Scholar]
  23. Rose I. A., Warms J. V. Mitochondrial hexokinase. Release, rebinding, and location. J Biol Chem. 1967 Apr 10;242(7):1635–1645. [PubMed] [Google Scholar]
  24. Rothman D. L., Magnusson I., Cline G., Gerard D., Kahn C. R., Shulman R. G., Shulman G. I. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):983–987. doi: 10.1073/pnas.92.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sobkowicz Hanna M., Slapnick Susan M., August Benjamin K. Differentiation of spinous synapses in the mouse organ of corti. Synapse. 2002 Jul;45(1):10–24. doi: 10.1002/syn.10080. [DOI] [PubMed] [Google Scholar]
  26. Whitesell R. R., Aboumrad M. K., Powers A. C., Regen D. M., Le C., Beechem J. M., May J. M., Abumrad N. A. Coupling of glucose transport and phosphorylation in Xenopus oocytes and cultured cells: determination of the rate-limiting step. J Cell Physiol. 1993 Dec;157(3):509–518. doi: 10.1002/jcp.1041570310. [DOI] [PubMed] [Google Scholar]
  27. Whitesell R. R., Regen D. M. Glucose transport characteristics of quiescent thymocytes. J Biol Chem. 1978 Oct 25;253(20):7289–7294. [PubMed] [Google Scholar]
  28. Williams R. M., Piston D. W., Webb W. W. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 1994 Aug;8(11):804–813. doi: 10.1096/fasebj.8.11.8070629. [DOI] [PubMed] [Google Scholar]
  29. de Cerqueira Cesar Marcelo, Wilson John E. Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria. Arch Biochem Biophys. 2002 Jan 1;397(1):106–112. doi: 10.1006/abbi.2001.2639. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES