Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):233–243. doi: 10.1042/BJ20021255

Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations.

Craig M Shepherd 1, Hans J Vogel 1, D Peter Tieleman 1
PMCID: PMC1223151  PMID: 12423203

Abstract

Molecular-dynamics simulations covering 30 ns of both a natural and a synthetic antimicrobial peptide in the presence of a zwitterionic lipid bilayer were performed. In both simulations, copies of the peptides were placed in an alpha-helical conformation on either side of the bilayer about 10 A (1 A=0.1 nm) from the interface, with either the hydrophobic or the positively charged face of the helix directed toward the bilayer surface. The degree of peptide-lipid interaction was dependent on the starting configuration: surface binding and subsequent penetration of the bilayer was observed for the hydrophobically oriented peptides, while the charge-oriented peptides demonstrated at most partial surface binding. Aromatic residues near the N-termini of the peptides appear to play an important role in driving peptide-lipid interactions. A correlation between the extent of peptide-lipid interactions and helical stability was observed in the simulations. Insertion of the peptides into the bilayer caused a dramatic increase in the lateral area per lipid and decrease in the bilayer thickness, resulting in substantial disordering of the lipid chains. Results from the simulations are consistent with early stages of proposed mechanisms for the lytic activity of antimicrobial peptides. In addition to these 'free' simulations, 25 ns simulations were carried out with the peptides constrained at three different distances relative to the bilayer interface. The constraint forces are in agreement with the extent of peptide-bilayer insertion observed in the free simulations.

Full Text

The Full Text of this article is available as a PDF (492.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachar M., Becker O. M. Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 2000 Mar;78(3):1359–1375. doi: 10.1016/S0006-3495(00)76690-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  3. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chipot C., Maigret B., Pohorille A. Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study. Proteins. 1999 Sep 1;36(4):383–399. [PubMed] [Google Scholar]
  6. Chipot C., Pohorille A. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study. J Am Chem Soc. 1998 Nov 25;120(46):11912–11924. doi: 10.1021/ja980010o. [DOI] [PubMed] [Google Scholar]
  7. Cordes F. S., Kukol A., Forrest L. R., Arkin I. T., Sansom M. S., Fischer W. B. The structure of the HIV-1 Vpu ion channel: modelling and simulation studies. Biochim Biophys Acta. 2001 Jun 6;1512(2):291–298. doi: 10.1016/s0005-2736(01)00332-7. [DOI] [PubMed] [Google Scholar]
  8. Fischer W. B., Pitkeathly M., Wallace B. A., Forrest L. R., Smith G. R., Sansom M. S. Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study. Biochemistry. 2000 Oct 17;39(41):12708–12716. doi: 10.1021/bi001000e. [DOI] [PubMed] [Google Scholar]
  9. Goormaghtigh E., Raussens V., Ruysschaert J. M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta. 1999 Jul 6;1422(2):105–185. doi: 10.1016/s0304-4157(99)00004-0. [DOI] [PubMed] [Google Scholar]
  10. Hancock R. E. Host defence (cationic) peptides: what is their future clinical potential? Drugs. 1999 Apr;57(4):469–473. doi: 10.2165/00003495-199957040-00002. [DOI] [PubMed] [Google Scholar]
  11. Hristova K., Wimley W. C., Mishra V. K., Anantharamiah G. M., Segrest J. P., White S. H. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol. 1999 Jul 2;290(1):99–117. doi: 10.1006/jmbi.1999.2840. [DOI] [PubMed] [Google Scholar]
  12. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  13. Hwang P. M., Vogel H. J. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76(2-3):235–246. doi: 10.1139/bcb-76-2-3-235. [DOI] [PubMed] [Google Scholar]
  14. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Kaiser E. T., Kézdy F. J. Secondary structures of proteins and peptides in amphiphilic environments. (A review). Proc Natl Acad Sci U S A. 1983 Feb;80(4):1137–1143. doi: 10.1073/pnas.80.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. King G. I., White S. H. Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J. 1986 May;49(5):1047–1054. doi: 10.1016/S0006-3495(86)83733-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kovacs F. A., Denny J. K., Song Z., Quine J. R., Cross T. A. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. J Mol Biol. 2000 Jan 7;295(1):117–125. doi: 10.1006/jmbi.1999.3322. [DOI] [PubMed] [Google Scholar]
  19. Ladokhin A. S., White S. H. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol. 1999 Jan 29;285(4):1363–1369. doi: 10.1006/jmbi.1998.2346. [DOI] [PubMed] [Google Scholar]
  20. Law R. J., Forrest L. R., Ranatunga K. M., La Rocca P., Tieleman D. P., Sansom M. S. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins. 2000 Apr 1;39(1):47–55. doi: 10.1002/(sici)1097-0134(20000401)39:1<47::aid-prot5>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  21. Lin J. H., Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J. 2000 Apr;78(4):1714–1724. doi: 10.1016/S0006-3495(00)76723-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludlam C. F., Arkin I. T., Liu X. M., Rothman M. S., Rath P., Aimoto S., Smith S. O., Engelman D. M., Rothschild K. J. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophys J. 1996 Apr;70(4):1728–1736. doi: 10.1016/S0006-3495(96)79735-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):1–10. doi: 10.1016/s0005-2736(99)00197-2. [DOI] [PubMed] [Google Scholar]
  25. Moll G. N., Brul S., Konings W. N., Driessen A. J. Comparison of the membrane interaction and permeabilization by the designed peptide Ac-MB21-NH2 and truncated dermaseptin S3. Biochemistry. 2000 Oct 3;39(39):11907–11912. doi: 10.1021/bi000917a. [DOI] [PubMed] [Google Scholar]
  26. Mor A., Hani K., Nicolas P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem. 1994 Dec 16;269(50):31635–31641. [PubMed] [Google Scholar]
  27. Schibli D. J., Hwang P. M., Vogel H. J. Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry. 1999 Dec 21;38(51):16749–16755. doi: 10.1021/bi990701c. [DOI] [PubMed] [Google Scholar]
  28. Schibli D. J., Hwang P. M., Vogel H. J. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett. 1999 Mar 12;446(2-3):213–217. doi: 10.1016/s0014-5793(99)00214-8. [DOI] [PubMed] [Google Scholar]
  29. Seelig A., Seelig J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry. 1977 Jan 11;16(1):45–50. doi: 10.1021/bi00620a008. [DOI] [PubMed] [Google Scholar]
  30. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  31. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  32. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
  33. Shai Y., Oren Z. From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001 Oct;22(10):1629–1641. doi: 10.1016/s0196-9781(01)00498-3. [DOI] [PubMed] [Google Scholar]
  34. Shepherd C. M., Schaus K. A., Vogel H. J., Juffer A. H. Molecular dynamics study of peptide-bilayer adsorption. Biophys J. 2001 Feb;80(2):579–596. doi: 10.1016/S0006-3495(01)76039-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shrivastava I. H., Capener C. E., Forrest L. R., Sansom M. S. Structure and dynamics of K channel pore-lining helices: a comparative simulation study. Biophys J. 2000 Jan;78(1):79–92. doi: 10.1016/S0006-3495(00)76574-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smaby J. M., Momsen M. M., Brockman H. L., Brown R. E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J. 1997 Sep;73(3):1492–1505. doi: 10.1016/S0006-3495(97)78181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tieleman D. P., Berendsen H. J., Sansom M. S. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. Biophys J. 2001 Jan;80(1):331–346. doi: 10.1016/S0006-3495(01)76018-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tieleman D. P., Sansom M. S., Berendsen H. J. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J. 1999 Jan;76(1 Pt 1):40–49. doi: 10.1016/S0006-3495(99)77176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tieleman D. Peter, Bentz Joe. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms. Biophys J. 2002 Sep;83(3):1501–1510. doi: 10.1016/S0006-3495(02)73920-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wieprecht T., Apostolov O., Beyermann M., Seelig J. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol. 1999 Dec 3;294(3):785–794. doi: 10.1006/jmbi.1999.3268. [DOI] [PubMed] [Google Scholar]
  41. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
  42. Yang L., Weiss T. M., Lehrer R. I., Huang H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J. 2000 Oct;79(4):2002–2009. doi: 10.1016/S0006-3495(00)76448-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES