Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):283–290. doi: 10.1042/BJ20021022

Selenite sensitizes mitochondrial permeability transition pore opening in vitro and in vivo: a possible mechanism for chemo-protection.

Shani Shilo 1, Anna Aronis 1, Rita Komarnitsky 1, Oren Tirosh 1
PMCID: PMC1223152  PMID: 12423204

Abstract

There is a known connection between selenium supplementation and chemo-protective anti-cancer activity. This biological phenomenon may be due to the ability of selenium to instigate cellular apoptosis. However, the mechanism by which selenium promotes cellular apoptosis is still obscure. The present study shows that sodium selenite, a common dietary form of selenium, promotes the mitochondrial permeability transition (MPT) in isolated rat liver mitochondria both in vitro and following in vivo supplementation. A low selenium concentration (0.1-10 microM) strongly induced cyclosporin A-sensitive mitochondrial swelling. Selenium also promoted both calcium release from the matrix of isolated mitochondria and uncoupled respiration. The MPT-inducing effect of selenium provoked the release of cytochrome c, a pro-apoptotic factor, into the incubation medium. Selenium did not increase intra-mitochondrial peroxide production, but did consume endogenous mitochondrial glutathione. Moreover, the effect of MPT induction was greatly potentiated in the presence of thiol-bearing antioxidants, e.g. N -acetylcysteine and lipoamide. During MPT progression, selenium induced NADH oxidation via electron acceptance from complex I. Supplementation for 20 days with 16 p.p.m. selenium in the drinking water of rats increased the propensity of mitochondria to undergo the MPT. More marked mitochondrial swelling in response to calcium and lower calcium-uptake capacity were observed, in the absence of liver damage or the intensive oxidation of reduced glutathione. Therefore selenite facilitates MPT pore opening via its thiol- and NADH/complex I-dependent reduction, and thereby may provide chemo-protection by potentiation of the capacity of the mitochondria to regulate programmed cell death. Data from the present study suggest that selenium can regulate important mitochondrial functions both in vivo and in vitro.

Full Text

The Full Text of this article is available as a PDF (163.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnér E. S., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x. [DOI] [PubMed] [Google Scholar]
  2. Bernardi P., Broekemeier K. M., Pfeiffer D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994 Oct;26(5):509–517. doi: 10.1007/BF00762735. [DOI] [PubMed] [Google Scholar]
  3. Bernardi P., Petronilli V., Di Lisa F., Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001 Feb;26(2):112–117. doi: 10.1016/s0968-0004(00)01745-x. [DOI] [PubMed] [Google Scholar]
  4. Brigelius-Flohé R., Maurer S., Lötzer K., Böl G., Kallionpä H., Lehtolainen P., Viita H., Ylä-Herttuala S. Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFkappaB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis. 2000 Oct;152(2):307–316. doi: 10.1016/s0021-9150(99)00486-4. [DOI] [PubMed] [Google Scholar]
  5. Cadenas E., Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000 Aug;29(3-4):222–230. doi: 10.1016/s0891-5849(00)00317-8. [DOI] [PubMed] [Google Scholar]
  6. Cai J., Jones D. P. Mitochondrial redox signaling during apoptosis. J Bioenerg Biomembr. 1999 Aug;31(4):327–334. doi: 10.1023/a:1005423818280. [DOI] [PubMed] [Google Scholar]
  7. Chernyak B. V., Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem. 1996 Jun 15;238(3):623–630. doi: 10.1111/j.1432-1033.1996.0623w.x. [DOI] [PubMed] [Google Scholar]
  8. Combs G. F., Jr Chemopreventive mechanisms of selenium. Med Klin (Munich) 1999 Oct 15;94 (Suppl 3):18–24. doi: 10.1007/BF03042185. [DOI] [PubMed] [Google Scholar]
  9. Combs G. F., Jr, Gray W. P. Chemopreventive agents: selenium. Pharmacol Ther. 1998 Sep;79(3):179–192. doi: 10.1016/s0163-7258(98)00014-x. [DOI] [PubMed] [Google Scholar]
  10. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  11. Crompton M., Virji S., Doyle V., Johnson N., Ward J. M. The mitochondrial permeability transition pore. Biochem Soc Symp. 1999;66:167–179. doi: 10.1042/bss0660167. [DOI] [PubMed] [Google Scholar]
  12. Davis C. D., Brooks L., Calisi C., Bennett B. J., McElroy D. M. Beneficial effect of selenium supplementation during murine infection with Trypanosoma cruzi. J Parasitol. 1998 Dec;84(6):1274–1277. [PubMed] [Google Scholar]
  13. Diehl A. M., Hoek J. B. Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control "the benefits of losing control". J Bioenerg Biomembr. 1999 Oct;31(5):493–506. doi: 10.1023/a:1005452624640. [DOI] [PubMed] [Google Scholar]
  14. Flohé L. The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul. 1985;27:473–478. doi: 10.1016/b978-0-12-152827-0.50047-5. [DOI] [PubMed] [Google Scholar]
  15. Ganther H. E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis. 1999 Sep;20(9):1657–1666. doi: 10.1093/carcin/20.9.1657. [DOI] [PubMed] [Google Scholar]
  16. Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  17. Halestrap A. P. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203. doi: 10.1042/bss0660181. [DOI] [PubMed] [Google Scholar]
  18. Hirsch T., Susin S. A., Marzo I., Marchetti P., Zamzami N., Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol. 1998 Mar;14(2):141–145. doi: 10.1023/a:1007486022411. [DOI] [PubMed] [Google Scholar]
  19. Ip C., Dong Y. Methylselenocysteine modulates proliferation and apoptosis biomarkers in premalignant lesions of the rat mammary gland. Anticancer Res. 2001 Mar-Apr;21(2A):863–867. [PubMed] [Google Scholar]
  20. Korsmeyer S. J., Wei M. C., Saito M., Weiler S., Oh K. J., Schlesinger P. H. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000 Dec;7(12):1166–1173. doi: 10.1038/sj.cdd.4400783. [DOI] [PubMed] [Google Scholar]
  21. Kroemer G., Reed J. C. Mitochondrial control of cell death. Nat Med. 2000 May;6(5):513–519. doi: 10.1038/74994. [DOI] [PubMed] [Google Scholar]
  22. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  23. Lee H. C., Wei Y. H. Mitochondrial role in life and death of the cell. J Biomed Sci. 2000 Jan-Feb;7(1):2–15. doi: 10.1007/BF02255913. [DOI] [PubMed] [Google Scholar]
  24. Maiorino M., Roche C., Kiess M., Koenig K., Gawlik D., Matthes M., Naldini E., Pierce R., Flohé L. A selenium-containing phospholipid-hydroperoxide glutathione peroxidase in Schistosoma mansoni. Eur J Biochem. 1996 Jun 15;238(3):838–844. doi: 10.1111/j.1432-1033.1996.0838w.x. [DOI] [PubMed] [Google Scholar]
  25. Medina D., Lane H. W., Tracey C. M. Selenium and mouse mammary tumorigenesis: an investigation of possible mechanisms. Cancer Res. 1983 May;43(5 Suppl):2460s–2464s. [PubMed] [Google Scholar]
  26. Molina H., García M. Enzymatic defenses of the rat heart against lipid peroxidation. Mech Ageing Dev. 1997 Jul;97(1):1–7. doi: 10.1016/s0047-6374(97)01876-9. [DOI] [PubMed] [Google Scholar]
  27. Patel M., Day B. J. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci. 1999 Sep;20(9):359–364. doi: 10.1016/s0165-6147(99)01336-x. [DOI] [PubMed] [Google Scholar]
  28. Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
  29. Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Schweizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta. 1995 May 24;1271(1):67–74. doi: 10.1016/0925-4439(95)00012-s. [DOI] [PubMed] [Google Scholar]
  30. Schulz H. U., Niederau C., Klonowski-Stumpe H., Halangk W., Luthen R., Lippert H. Oxidative stress in acute pancreatitis. Hepatogastroenterology. 1999 Sep-Oct;46(29):2736–2750. [PubMed] [Google Scholar]
  31. Schweizer M., Richter C. Peroxynitrite stimulates the pyridine nucleotide-linked Ca2+ release from intact rat liver mitochondria. Biochemistry. 1996 Apr 9;35(14):4524–4528. doi: 10.1021/bi952708+. [DOI] [PubMed] [Google Scholar]
  32. Shen H., Yang C., Liu J., Ong C. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radic Biol Med. 2000 Apr 1;28(7):1115–1124. doi: 10.1016/s0891-5849(00)00206-9. [DOI] [PubMed] [Google Scholar]
  33. Shiobara Y., Yoshida T., Suzuki K. T. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol Appl Pharmacol. 1998 Oct;152(2):309–314. doi: 10.1006/taap.1998.8537. [DOI] [PubMed] [Google Scholar]
  34. Simon H. U., Haj-Yehia A., Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000 Nov;5(5):415–418. doi: 10.1023/a:1009616228304. [DOI] [PubMed] [Google Scholar]
  35. Tirosh O., Sen C. K., Roy S., Packer L. Cellular and mitochondrial changes in glutamate-induced HT4 neuronal cell death. Neuroscience. 2000;97(3):531–541. doi: 10.1016/s0306-4522(00)00028-2. [DOI] [PubMed] [Google Scholar]
  36. Wei Y., Cao X., Ou Y., Lu J., Xing C., Zheng R. SeO(2) induces apoptosis with down-regulation of Bcl-2 and up-regulation of P53 expression in both immortal human hepatic cell line and hepatoma cell line. Mutat Res. 2001 Feb 20;490(2):113–121. doi: 10.1016/s1383-5718(00)00149-2. [DOI] [PubMed] [Google Scholar]
  37. Yang C. F., Shen H. M., Ong C. N. Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis. Arch Biochem Biophys. 2000 Aug 15;380(2):319–330. doi: 10.1006/abbi.2000.1939. [DOI] [PubMed] [Google Scholar]
  38. Zhang Yingpei, Herman Brian. Ageing and apoptosis. Mech Ageing Dev. 2002 Feb;123(4):245–260. doi: 10.1016/s0047-6374(01)00349-9. [DOI] [PubMed] [Google Scholar]
  39. Zhang Yingpei, Herman Brian. Apoptosis and successful aging. Mech Ageing Dev. 2002 Mar 31;123(6):563–565. doi: 10.1016/s0047-6374(02)00007-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES