Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):121–127. doi: 10.1042/BJ20021444

An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens.

Donatella Ponti 1, M Luisa Mangoni 1, Giuseppina Mignogna 1, Maurizio Simmaco 1, Donatella Barra 1
PMCID: PMC1223161  PMID: 12435273

Abstract

Esculentin-1 is a 46-residue antimicrobial peptide present in skin secretions of Rana esculenta. It is effective against a wide variety of micro-organisms, including plant pathogens with negligible effects on eukaryotic cells. As a possible approach to enhance plant resistance, a DNA coding for esculentin-1, with the substitution Met-28Leu, was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein, under the control of the cauliflower mosaic virus 35S promoter region, and introduced into Nicotiana tabacum. The antimicrobial peptide was isolated from the intercellular fluids of healthy leaves of transgenic plants, suggesting that it was properly processed, secreted outside cells and accumulated in the intercellular spaces. The morphology of transgenic plants was unaffected. Challenging these plants with bacterial or fungal phytopathogens demonstrated enhanced resistance up to the second generation. Moreover, transgenic plants displayed insecticidal properties.

Full Text

The Full Text of this article is available as a PDF (259.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Baulcombe D. C., Chapman S., Santa Cruz S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995 Jun;7(6):1045–1053. doi: 10.1046/j.1365-313x.1995.07061045.x. [DOI] [PubMed] [Google Scholar]
  3. Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
  4. Carmona M. J., Molina A., Fernández J. A., López-Fando J. J., García-Olmedo F. Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 1993 Mar;3(3):457–462. doi: 10.1111/j.1365-313x.1993.tb00165.x. [DOI] [PubMed] [Google Scholar]
  5. Chandra A., Ghosh P., Mandaokar A. D., Bera A. K., Sharma R. P., Das S., Kumar P. A. Amino acid substitution in alpha-helix 7 of Cry1Ac delta-endotoxin of Bacillus thuringiensis leads to enhanced toxicity to Helicoverpa armigera Hubner. FEBS Lett. 1999 Sep 17;458(2):175–179. doi: 10.1016/s0014-5793(99)01157-6. [DOI] [PubMed] [Google Scholar]
  6. Dangl J. L., Dietrich R. A., Richberg M. H. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996 Oct;8(10):1793–1807. doi: 10.1105/tpc.8.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Epple P., Apel K., Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell. 1997 Apr;9(4):509–520. doi: 10.1105/tpc.9.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gao A. G., Hakimi S. M., Mittanck C. A., Wu Y., Woerner B. M., Stark D. M., Shah D. M., Liang J., Rommens C. M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000 Dec;18(12):1307–1310. doi: 10.1038/82436. [DOI] [PubMed] [Google Scholar]
  9. Gelvin SB. The introduction and expression of transgenes in plants. Curr Opin Biotechnol. 1998 Apr 1;9(2):227–232. doi: 10.1016/s0958-1669(98)80120-1. [DOI] [PubMed] [Google Scholar]
  10. Gura T. Innate immunity. Ancient system gets new respect. Science. 2001 Mar 16;291(5511):2068–2071. doi: 10.1126/science.291.5511.2068. [DOI] [PubMed] [Google Scholar]
  11. Hancock R. E., Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998 Feb;16(2):82–88. doi: 10.1016/s0167-7799(97)01156-6. [DOI] [PubMed] [Google Scholar]
  12. Hultmark D., Engström A., Andersson K., Steiner H., Bennich H., Boman H. G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorito M., Woo S. L., Garcia I., Colucci G., Harman G. E., Pintor-Toro J. A., Filippone E., Muccifora S., Lawrence C. B., Zoina A. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7860–7865. doi: 10.1073/pnas.95.14.7860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mittler R., Lam E. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 1996 Jan;4(1):10–15. doi: 10.1016/0966-842x(96)81499-5. [DOI] [PubMed] [Google Scholar]
  15. Molina A., García-Olmedo F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J. 1997 Sep;12(3):669–675. doi: 10.1046/j.1365-313x.1997.00669.x. [DOI] [PubMed] [Google Scholar]
  16. Mourgues F., Brisset M. N., Chevreau E. Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol. 1998 May;16(5):203–210. doi: 10.1016/s0167-7799(98)01189-5. [DOI] [PubMed] [Google Scholar]
  17. Orivel J., Redeker V., Le Caer J. P., Krier F., Revol-Junelles A. M., Longeon A., Chaffotte A., Dejean A., Rossier J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem. 2001 Feb 22;276(21):17823–17829. doi: 10.1074/jbc.M100216200. [DOI] [PubMed] [Google Scholar]
  18. Osusky M., Zhou G., Osuska L., Hancock R. E., Kay W. W., Misra S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol. 2000 Nov;18(11):1162–1166. doi: 10.1038/81145. [DOI] [PubMed] [Google Scholar]
  19. Plotnikova J. M., Rahme L. G., Ausubel F. M. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol. 2000 Dec;124(4):1766–1774. doi: 10.1104/pp.124.4.1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ponti D., Mignogna G., Mangoni M. L., De Biase D., Simmaco M., Barra D. Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. Eur J Biochem. 1999 Aug;263(3):921–927. doi: 10.1046/j.1432-1327.1999.00597.x. [DOI] [PubMed] [Google Scholar]
  21. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. Common virulence factors for bacterial pathogenicity in plants and animals. Science. 1995 Jun 30;268(5219):1899–1902. doi: 10.1126/science.7604262. [DOI] [PubMed] [Google Scholar]
  22. Segura A., Moreno M., Molina A., García-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998 Sep 18;435(2-3):159–162. doi: 10.1016/s0014-5793(98)01060-6. [DOI] [PubMed] [Google Scholar]
  23. Simmaco M., Mangoni M. L., Boman A., Barra D., Boman H. G. Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol. 1998 Oct;48(4):357–363. doi: 10.1046/j.1365-3083.1998.00407.x. [DOI] [PubMed] [Google Scholar]
  24. Simmaco M., Mignogna G., Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998;47(6):435–450. doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  25. Simmaco M., Mignogna G., Barra D., Bossa F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem. 1994 Apr 22;269(16):11956–11961. [PubMed] [Google Scholar]
  26. Stuiver M. H., Custers J. H. Engineering disease resistance in plants. Nature. 2001 Jun 14;411(6839):865–868. doi: 10.1038/35081200. [DOI] [PubMed] [Google Scholar]
  27. Toubart P., Desiderio A., Salvi G., Cervone F., Daroda L., De Lorenzo G. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J. 1992 May;2(3):367–373. doi: 10.1046/j.1365-313x.1992.t01-35-00999.x. [DOI] [PubMed] [Google Scholar]
  28. Wang M. S., Pang J. S., Selsted M. E. Semidry electroblotting of peptides and proteins from acid-urea polyacrylamide gels. Anal Biochem. 1997 Nov 15;253(2):225–230. doi: 10.1006/abio.1997.2347. [DOI] [PubMed] [Google Scholar]
  29. Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES