Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):185–193. doi: 10.1042/BJ20021411

Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells.

Zahia Ouar 1, Marcelle Bens 1, Caroline Vignes 1, Marc Paulais 1, Claudine Pringel 1, Jocelyne Fleury 1, Francçoise Cluzeaud 1, Roger Lacave 1, Alain Vandewalle 1
PMCID: PMC1223162  PMID: 12435274

Abstract

It has been suggested that the inappropriate sequestration of weak-base chemotherapeutic drugs in acidic vesicles by multidrug-resistance (MDR) cells contributes to the mechanisms of drug resistance. The function of the acidic lysosomes can be altered in MDR cells, and so we investigated the effects of lysosomotropic agents on the secretion of lysosomal enzymes and on the intracellular distribution of the weak-base anthracycline daunomycin in drug-resistant renal proximal tubule PKSV-PR(col50) cells and their drug-sensitive PKSV-PR cell counterparts. Imaging studies using pH-dependent lysosomotropic dyes revealed that drug-sensitive and drug-resistant cells exhibited a similar acidic lysosomal pH (around 5.6-5.7), but that PKSV-PR(col50) cells contained more acidic lysosomes and secreted more of the lysosomal enzymes N -acetyl-beta-hexosaminidase and beta-glucuronidase than their parent PKSV-PR cells. Concanamycin A (CCM A), a potent inhibitor of the vacuolar H(+)-ATPase, but not the P-glycoprotein modulator verapamil, stimulated the secretion of N -acetyl-beta-hexosaminidase in both drug-sensitive and drug-resistant cells. Fluorescent studies and Percoll density gradient fractionation studies revealed that daunomycin accumulated predominantly in the lysosomes of PKSV-PR(col50) cells, whereas in PKSV-PR cells the drug was distributed evenly throughout the nucleo-cytoplasmic compartments. CCM A did not impair the cellular efflux of daunomycin, but induced the rapid nucleo-cytoplasmic redistribution of the drug in PKSV-PR(col50) cells. In addition, CCM A and bafilomycin A1 almost completely restored the sensitivity of these drug-resistant cells to daunomycin, doxorubicin and epirubicin. These findings indicate that lysosomotropic agents that impair the acidic-pH-dependent accumulation of weak-base chemotherapeutic drugs may reverse anthracycline resistance in MDR cells with an expanded acidic lysosomal compartment.

Full Text

The Full Text of this article is available as a PDF (327.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altan N., Chen Y., Schindler M., Simon S. M. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med. 1998 May 18;187(10):1583–1598. doi: 10.1084/jem.187.10.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck W. T. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987 Sep 15;36(18):2879–2887. doi: 10.1016/0006-2952(87)90198-5. [DOI] [PubMed] [Google Scholar]
  3. Carmichael J., DeGraff W. G., Gazdar A. F., Minna J. D., Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987 Feb 15;47(4):936–942. [PubMed] [Google Scholar]
  4. Cartier N., Lacave R., Vallet V., Hagege J., Hellio R., Robine S., Pringault E., Cluzeaud F., Briand P., Kahn A. Establishment of renal proximal tubule cell lines by targeted oncogenesis in transgenic mice using the L-pyruvate kinase-SV40 (T) antigen hybrid gene. J Cell Sci. 1993 Mar;104(Pt 3):695–704. doi: 10.1242/jcs.104.3.695. [DOI] [PubMed] [Google Scholar]
  5. Coley H. M., Amos W. B., Twentyman P. R., Workman P. Examination by laser scanning confocal fluorescence imaging microscopy of the subcellular localisation of anthracyclines in parent and multidrug resistant cell lines. Br J Cancer. 1993 Jun;67(6):1316–1323. doi: 10.1038/bjc.1993.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  7. Gewirtz D. A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999 Apr 1;57(7):727–741. doi: 10.1016/s0006-2952(98)00307-4. [DOI] [PubMed] [Google Scholar]
  8. Gluck S. L., Underhill D. M., Iyori M., Holliday L. S., Kostrominova T. Y., Lee B. S. Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu Rev Physiol. 1996;58:427–445. doi: 10.1146/annurev.ph.58.030196.002235. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez-Noriega A., Grubb J. H., Talkad V., Sly W. S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol. 1980 Jun;85(3):839–852. doi: 10.1083/jcb.85.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  11. Günther W., Lüchow A., Cluzeaud F., Vandewalle A., Jentsch T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8075–8080. doi: 10.1073/pnas.95.14.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hindenburg A. A., Gervasoni J. E., Jr, Krishna S., Stewart V. J., Rosado M., Lutzky J., Bhalla K., Baker M. A., Taub R. N. Intracellular distribution and pharmacokinetics of daunorubicin in anthracycline-sensitive and -resistant HL-60 cells. Cancer Res. 1989 Aug 15;49(16):4607–4614. [PubMed] [Google Scholar]
  13. Hoffman M. M., Wei L. Y., Roepe P. D. Are altered pHi and membrane potential in hu MDR 1 transfectants sufficient to cause MDR protein-mediated multidrug resistance? J Gen Physiol. 1996 Oct;108(4):295–313. doi: 10.1085/jgp.108.4.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurwitz S. J., Terashima M., Mizunuma N., Slapak C. A. Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes. Blood. 1997 May 15;89(10):3745–3754. [PubMed] [Google Scholar]
  15. Imort M., Zühlsdorf M., Feige U., Hasilik A., von Figura K. Biosynthesis and transport of lysosomal enzymes in human monocytes and macrophages. Effects of ammonium chloride, zymosan and tunicamycin. Biochem J. 1983 Sep 15;214(3):671–678. doi: 10.1042/bj2140671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jiang L. W., Maher V. M., McCormick J. J., Schindler M. Alkalinization of the lysosomes is correlated with ras transformation of murine and human fibroblasts. J Biol Chem. 1990 Mar 25;265(9):4775–4777. [PubMed] [Google Scholar]
  17. Kataoka T., Muroi M., Ohkuma S., Waritani T., Magae J., Takatsuki A., Kondo S., Yamasaki M., Nagai K. Prodigiosin 25-C uncouples vacuolar type H(+)-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett. 1995 Feb 6;359(1):53–59. doi: 10.1016/0014-5793(94)01446-8. [DOI] [PubMed] [Google Scholar]
  18. Keizer H. G., Joenje H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. J Natl Cancer Inst. 1989 May 3;81(9):706–709. doi: 10.1093/jnci/81.9.706. [DOI] [PubMed] [Google Scholar]
  19. Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986 Jan;77(1):1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lacave R., Ouar Z., Paulais M., Bens M., Ricci S., Cluzeaud F., Vandewalle A. Lysosomotropic agents increase vinblastine efflux from mouse MDR proximal kidney cells exhibiting vectorial drug transport. J Cell Physiol. 1999 Feb;178(2):247–257. doi: 10.1002/(SICI)1097-4652(199902)178:2<247::AID-JCP14>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  22. Lautier D., Bailly J. D., Demur C., Herbert J. M., Bousquet C., Laurent G. Altered intracellular distribution of daunorubicin in immature acute myeloid leukemia cells. Int J Cancer. 1997 Apr 10;71(2):292–299. doi: 10.1002/(sici)1097-0215(19970410)71:2<292::aid-ijc26>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  23. Ma L., Center M. S. The gene encoding vacuolar H(+)-ATPase subunit C is overexpressed in multidrug-resistant HL60 cells. Biochem Biophys Res Commun. 1992 Jan 31;182(2):675–681. doi: 10.1016/0006-291x(92)91785-o. [DOI] [PubMed] [Google Scholar]
  24. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Riccaldi D., Robic D., Bens M., Cluzeaud F., Wu M. S., Bourbouze R., Vandewalle A. Cultured proximal cells derived from transgenic mouse provide a model to study drug toxicity. Kidney Int. 1995 Sep;48(3):722–730. doi: 10.1038/ki.1995.343. [DOI] [PubMed] [Google Scholar]
  26. Riches D. W., Stanworth D. R. Primary amines induce selective release of lysosomal enzymes from mouse macrophages. Biochem J. 1980 Jun 15;188(3):933–936. doi: 10.1042/bj1880933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rutherford A. V., Willingham M. C. Ultrastructural localization of daunomycin in multidrug-resistant cultured cells with modulation of the multidrug transporter. J Histochem Cytochem. 1993 Oct;41(10):1573–1577. doi: 10.1177/41.10.7902372. [DOI] [PubMed] [Google Scholar]
  28. Saint-Pol A., Bauvy C., Codogno P., Moore S. E. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J Cell Biol. 1997 Jan 13;136(1):45–59. doi: 10.1083/jcb.136.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schindler M., Grabski S., Hoff E., Simon S. M. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry. 1996 Mar 5;35(9):2811–2817. doi: 10.1021/bi952234e. [DOI] [PubMed] [Google Scholar]
  30. Simon S. M., Schindler M. Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3497–3504. doi: 10.1073/pnas.91.9.3497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stevens T. H., Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol. 1997;13:779–808. doi: 10.1146/annurev.cellbio.13.1.779. [DOI] [PubMed] [Google Scholar]
  32. Tanaka Y., Harada R., Himeno M., Kato K. Biosynthesis, processing, and intracellular transport of lysosomal acid phosphatase in rat hepatocytes. J Biochem. 1990 Aug;108(2):278–286. doi: 10.1093/oxfordjournals.jbchem.a123194. [DOI] [PubMed] [Google Scholar]
  33. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  35. Vandewalle A. Immortalized kidney cells derived from transgenic mice harboring L-type pyruvate kinase and vimentin promoters. Exp Nephrol. 1999 Sep-Dec;7(5-6):386–393. doi: 10.1159/000020636. [DOI] [PubMed] [Google Scholar]
  36. Wadkins R. M., Roepe P. D. Biophysical aspects of P-glycoprotein-mediated multidrug resistance. Int Rev Cytol. 1997;171:121–165. doi: 10.1016/s0074-7696(08)62587-5. [DOI] [PubMed] [Google Scholar]
  37. Wang E., Lee M. D., Dunn K. W. Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells. J Cell Physiol. 2000 Aug;184(2):263–274. doi: 10.1002/1097-4652(200008)184:2<263::AID-JCP15>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  38. Warren L., Jardillier J. C., Ordentlich P. Secretion of lysosomal enzymes by drug-sensitive and multiple drug-resistant cells. Cancer Res. 1991 Apr 15;51(8):1996–2001. [PubMed] [Google Scholar]
  39. Willingham M. C., Cornwell M. M., Cardarelli C. O., Gottesman M. M., Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res. 1986 Nov;46(11):5941–5946. [PubMed] [Google Scholar]
  40. Woo J. T., Shinohara C., Sakai K., Hasumi K., Endo A. Isolation, characterization and biological activities of concanamycins as inhibitors of lysosomal acidification. J Antibiot (Tokyo) 1992 Jul;45(7):1108–1116. doi: 10.7164/antibiotics.45.1108. [DOI] [PubMed] [Google Scholar]
  41. von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES