Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):265–273. doi: 10.1042/BJ20021335

Degradation of human thymidine kinase is dependent on serine-13 phosphorylation: involvement of the SCF-mediated pathway.

Po-Yuan Ke 1, Che-Chuan Yang 1, I-Chun Tsai 1, Zee-Fen Chang 1
PMCID: PMC1223163  PMID: 12435275

Abstract

The expression level of human thymidine kinase (hTK) is regulated in a cell-cycle-dependent manner. One of the mechanisms responsible for the fluctuation of TK expression in the cell cycle can be attributed to protein degradation during mitosis. Given the facts that cell-cycle-dependent proteolysis is highly conserved in all eukaryotes and yeast cells are an excellent model system for protein-degradation study, here we report on the use of Saccharomyces cerevisiae and Schizosaccharomyces pombe to investigate the degradation signal and mechanism required for hTK degradation. We found that the stability of hTK is significantly reduced in mitotic yeasts. Previously, we have observed that Ser-13 is the site of mitotic phosphorylation of hTK in HeLa cells [Chang, Huang and Chi (1998) J. Biol. Chem. 273, 12095-12100]. Here, we further provide evidence that the replacement of Ser-13 by Ala (S13A) renders hTK stable in S. pombe and S. cerevisiae. Most interestingly, we demonstrated that degradation of hTK is impaired in S. cerevisiae carrying a temperature-sensitive mutation in the proteasomal gene pre1-1 or the Skp1-Cullin-1/CDC53-F-box (SCF) complex gene cdc34 or cdc53, suggesting the contribution of the SCF-mediated pathway in hTK degradation. As phosphorylation is a prerequisite signal for SCF recognition, our results implied that phosphorylation of Ser-13 probably contributes to the degradation signal for hTK via the SCF-mediated proteolytic pathway.

Full Text

The Full Text of this article is available as a PDF (423.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bello L. J. Regulation of thymidine kinase synthesis in human cells. Exp Cell Res. 1974 Dec;89(2):263–274. doi: 10.1016/0014-4827(74)90790-3. [DOI] [PubMed] [Google Scholar]
  2. Chang Z. F., Huang D. Y., Chi L. M. Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem. 1998 May 15;273(20):12095–12100. doi: 10.1074/jbc.273.20.12095. [DOI] [PubMed] [Google Scholar]
  3. Chang Z. F., Huang D. Y., Hsue N. C. Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. J Biol Chem. 1994 Aug 19;269(33):21249–21254. [PubMed] [Google Scholar]
  4. Chang Z. F., Huang D. Y. The regulation of thymidine kinase in HL-60 human promyeloleukemia cells. J Biol Chem. 1993 Jan 15;268(2):1266–1271. [PubMed] [Google Scholar]
  5. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998 Dec 15;17(24):7151–7160. doi: 10.1093/emboj/17.24.7151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coppock D. L., Pardee A. B. Control of thymidine kinase mRNA during the cell cycle. Mol Cell Biol. 1987 Aug;7(8):2925–2932. doi: 10.1128/mcb.7.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeSalle L. M., Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett. 2001 Feb 16;490(3):179–189. doi: 10.1016/s0014-5793(01)02121-4. [DOI] [PubMed] [Google Scholar]
  8. Deshaies R. J., Ferrell J. E., Jr Multisite phosphorylation and the countdown to S phase. Cell. 2001 Dec 28;107(7):819–822. doi: 10.1016/s0092-8674(01)00620-1. [DOI] [PubMed] [Google Scholar]
  9. Deshaies R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999;15:435–467. doi: 10.1146/annurev.cellbio.15.1.435. [DOI] [PubMed] [Google Scholar]
  10. Drury L. S., Perkins G., Diffley J. F. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 1997 Oct 1;16(19):5966–5976. doi: 10.1093/emboj/16.19.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frolova E., Johnston M., Majors J. Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulationby glucose and chromatin structure. Nucleic Acids Res. 1999 Mar 1;27(5):1350–1358. doi: 10.1093/nar/27.5.1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heinemeyer W., Kleinschmidt J. A., Saidowsky J., Escher C., Wolf D. H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 1991 Mar;10(3):555–562. doi: 10.1002/j.1460-2075.1991.tb07982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  14. Ito M., Conrad S. E. Independent regulation of thymidine kinase mRNA and enzyme levels in serum-stimulated cells. J Biol Chem. 1990 Apr 25;265(12):6954–6960. [PubMed] [Google Scholar]
  15. Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000 Oct;10(10):429–439. doi: 10.1016/s0962-8924(00)01834-1. [DOI] [PubMed] [Google Scholar]
  16. Johnson L. F., Rao L. G., Muench A. J. Regulation of thymidine kinase enzyme level in serum-stimulated mouse 3T6 fibroblasts. Exp Cell Res. 1982 Mar;138(1):79–85. doi: 10.1016/0014-4827(82)90093-3. [DOI] [PubMed] [Google Scholar]
  17. Johnston M., Flick J. S., Pexton T. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jun;14(6):3834–3841. doi: 10.1128/mcb.14.6.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kauffman M. G., Kelly T. J. Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol Cell Biol. 1991 May;11(5):2538–2546. doi: 10.1128/mcb.11.5.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kauffman M. G., Rose P. A., Kelly T. J. Mutations in the thymidine kinase gene that allow expression of the enzyme in quiescent (G0) cells. Oncogene. 1991 Aug;6(8):1427–1435. [PubMed] [Google Scholar]
  20. Kim Y. K., Lee A. S. Identification of a 70-base-pair cell cycle regulatory unit within the promoter of the human thymidine kinase gene and its interaction with cellular factors. Mol Cell Biol. 1991 Apr;11(4):2296–2302. doi: 10.1128/mcb.11.4.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knöfler M., Waltner C., Wintersberger E., Müllner E. W. Translational repression of endogenous thymidine kinase mRNA in differentiating and arresting mouse cells. J Biol Chem. 1993 May 25;268(15):11409–11416. [PubMed] [Google Scholar]
  22. Koepp D. M., Schaefer L. K., Ye X., Keyomarsi K., Chu C., Harper J. W., Elledge S. J. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001 Aug 30;294(5540):173–177. doi: 10.1126/science.1065203. [DOI] [PubMed] [Google Scholar]
  23. Krek W. Proteolysis and the G1-S transition: the SCF connection. Curr Opin Genet Dev. 1998 Feb;8(1):36–42. doi: 10.1016/s0959-437x(98)80059-2. [DOI] [PubMed] [Google Scholar]
  24. Lipson K. E., Chen S. T., Koniecki J., Ku D. H., Baserga R. S-phase-specific regulation by deletion mutants of the human thymidine kinase promoter. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6848–6852. doi: 10.1073/pnas.86.18.6848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mikulits W., Hengstschläger M., Sauer T., Wintersberger E., Müllner E. W. Overexpression of thymidine kinase mRNA eliminates cell cycle regulation of thymidine kinase enzyme activity. J Biol Chem. 1996 Jan 12;271(2):853–860. doi: 10.1074/jbc.271.2.853. [DOI] [PubMed] [Google Scholar]
  26. Nash P., Tang X., Orlicky S., Chen Q., Gertler F. B., Mendenhall M. D., Sicheri F., Pawson T., Tyers M. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature. 2001 Nov 29;414(6863):514–521. doi: 10.1038/35107009. [DOI] [PubMed] [Google Scholar]
  27. Page A. M., Hieter P. The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem. 1999;68:583–609. doi: 10.1146/annurev.biochem.68.1.583. [DOI] [PubMed] [Google Scholar]
  28. Peters Jan-Michael. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell. 2002 May;9(5):931–943. doi: 10.1016/s1097-2765(02)00540-3. [DOI] [PubMed] [Google Scholar]
  29. Roehl H. H., Conrad S. E. Identification of a G1-S-phase-regulated region in the human thymidine kinase gene promoter. Mol Cell Biol. 1990 Jul;10(7):3834–3837. doi: 10.1128/mcb.10.7.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scheffner M., Nuber U., Huibregtse J. M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995 Jan 5;373(6509):81–83. doi: 10.1038/373081a0. [DOI] [PubMed] [Google Scholar]
  31. Schwob E., Böhm T., Mendenhall M. D., Nasmyth K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 1994 Oct 21;79(2):233–244. doi: 10.1016/0092-8674(94)90193-7. [DOI] [PubMed] [Google Scholar]
  32. Sherley J. L., Kelly T. J. Regulation of human thymidine kinase during the cell cycle. J Biol Chem. 1988 Jun 15;263(17):8350–8358. [PubMed] [Google Scholar]
  33. Skowyra D., Craig K. L., Tyers M., Elledge S. J., Harper J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell. 1997 Oct 17;91(2):209–219. doi: 10.1016/s0092-8674(00)80403-1. [DOI] [PubMed] [Google Scholar]
  34. Strohmaier H., Spruck C. H., Kaiser P., Won K. A., Sangfelt O., Reed S. I. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature. 2001 Sep 20;413(6853):316–322. doi: 10.1038/35095076. [DOI] [PubMed] [Google Scholar]
  35. Stuart P., Ito M., Stewart C., Conrad S. E. Induction of cellular thymidine kinase occurs at the mRNA level. Mol Cell Biol. 1985 Jun;5(6):1490–1497. doi: 10.1128/mcb.5.6.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Su J. Y., Maller J. L. Cloning and expression of a Xenopus gene that prevents mitotic catastrophe in fission yeast. Mol Gen Genet. 1995 Feb 6;246(3):387–396. doi: 10.1007/BF00288613. [DOI] [PubMed] [Google Scholar]
  37. Su J. Y., Maller J. L. Identification of a Xenopus cDNA that prevents mitotic catastrophe in the fission yeast Schizosaccharomyces pombe. Gene. 1994 Jul 22;145(1):155–156. doi: 10.1016/0378-1119(94)90343-3. [DOI] [PubMed] [Google Scholar]
  38. Sutterluety H., Bartl S., Karlseder J., Wintersberger E., Seiser C. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells. J Mol Biol. 1996 Jun 14;259(3):383–392. doi: 10.1006/jmbi.1996.0327. [DOI] [PubMed] [Google Scholar]
  39. Tyers M., Willems A. R. One ring to rule a superfamily of E3 ubiquitin ligases. Science. 1999 Apr 23;284(5414):601, 603-4. doi: 10.1126/science.284.5414.601. [DOI] [PubMed] [Google Scholar]
  40. Winston J. T., Koepp D. M., Zhu C., Elledge S. J., Harper J. W. A family of mammalian F-box proteins. Curr Biol. 1999 Oct 21;9(20):1180–1182. doi: 10.1016/S0960-9822(00)80021-4. [DOI] [PubMed] [Google Scholar]
  41. Winston J. T., Strack P., Beer-Romero P., Chu C. Y., Elledge S. J., Harper J. W. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999 Feb 1;13(3):270–283. doi: 10.1101/gad.13.3.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zachariae W., Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 1999 Aug 15;13(16):2039–2058. doi: 10.1101/gad.13.16.2039. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES