Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):551–556. doi: 10.1042/BJ20021559

Phosphorylation of myosin II regulatory light chain is necessary for migration of HeLa cells but not for localization of myosin II at the leading edge.

Katsumi Fumoto 1, Takashi Uchimura 1, Takahiro Iwasaki 1, Kozue Ueda 1, Hiroshi Hosoya 1
PMCID: PMC1223179  PMID: 12429016

Abstract

To investigate the role of phosphorylated myosin II regulatory light chain (MRLC) in living cell migration, these mutant MRLCs were engineered and introduced into HeLa cells. The mutant MRLCs include an unphosphorylatable form, in which both Thr-18 and Ser-19 were substituted with Ala (AA-MRLC), and pseudophosphorylated forms, in which Thr-18 and Ser-19 were replaced with Ala and Asp, respectively (AD-MRLC), and both Thr-18 and Ser-19 were replaced with Asp (DD-MRLC). Mutant MRLC-expressing cell monolayers were mechanically stimulated by scratching, and the cells were forced to migrate in a given direction. In this wound-healing assay, the AA-MRLC-expressing cells migrated much more slowly than the wild-type MRLC-expressing cells. In the case of DD-MRLC- and AD-MRLC-expressing cells, no significant differences compared with wild-type MRLC-expressing cells were observed in their migration speed. Indirect immunofluorescence staining showed that the accumulation of endogenous diphosphorylated MRLC at the leading edge was not observed in AA-MRLC-expressing cells, although AA-MRLC was incorporated into myosin heavy chain and localized at the leading edge. In conclusion, we propose that the phosphorylation of MRLC is required to generate the driving force in the migration of the cells but not necessary for localization of myosin II at the leading edge.

Full Text

The Full Text of this article is available as a PDF (248.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alblas J., Ulfman L., Hordijk P., Koenderman L. Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell. 2001 Jul;12(7):2137–2145. doi: 10.1091/mbc.12.7.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano T., Matsuura Y., Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996 Aug 23;271(34):20246–20249. doi: 10.1074/jbc.271.34.20246. [DOI] [PubMed] [Google Scholar]
  3. Chew T. L., Masaracchia R. A., Goeckeler Z. M., Wysolmerski R. B. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil. 1998 Nov;19(8):839–854. doi: 10.1023/a:1005417926585. [DOI] [PubMed] [Google Scholar]
  4. Chew Teng-Leong, Wolf Wendy A., Gallagher Patricia J., Matsumura Fumio, Chisholm Rex L. A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J Cell Biol. 2002 Jan 28;156(3):543–553. doi: 10.1083/jcb.200110161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerashchenko Bogdan I., Ueda Kozue, Hino Mizuki, Hosoya Hiroshi. Phosphorylation at threonine-18 in addition to phosphorylation at serine-19 on myosin-II regulatory light chain is a mitosis-specific event. Cytometry. 2002 Mar 1;47(3):150–157. doi: 10.1002/cyto.10059. [DOI] [PubMed] [Google Scholar]
  6. Ikebe M., Hartshorne D. J., Elzinga M. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem. 1986 Jan 5;261(1):36–39. [PubMed] [Google Scholar]
  7. Ikebe M., Hartshorne D. J. Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem. 1985 Aug 25;260(18):10027–10031. [PubMed] [Google Scholar]
  8. Iwasaki T., Murata-Hori M., Ishitobi S., Hosoya H. Diphosphorylated MRLC is required for organization of stress fibers in interphase cells and the contractile ring in dividing cells. Cell Struct Funct. 2001 Dec;26(6):677–683. doi: 10.1247/csf.26.677. [DOI] [PubMed] [Google Scholar]
  9. Kamisoyama H., Araki Y., Ikebe M. Mutagenesis of the phosphorylation site (serine 19) of smooth muscle myosin regulatory light chain and its effects on the properties of myosin. Biochemistry. 1994 Jan 25;33(3):840–847. doi: 10.1021/bi00169a027. [DOI] [PubMed] [Google Scholar]
  10. Kolega J., Kumar S. Regulatory light chain phosphorylation and the assembly of myosin II into the cytoskeleton of microcapillary endothelial cells. Cell Motil Cytoskeleton. 1999;43(3):255–268. doi: 10.1002/(SICI)1097-0169(1999)43:3<255::AID-CM8>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  11. Komatsu S., Hosoya H. Phosphorylation by MAPKAP kinase 2 activates Mg(2+)-ATPase activity of myosin II. Biochem Biophys Res Commun. 1996 Jun 25;223(3):741–745. doi: 10.1006/bbrc.1996.0966. [DOI] [PubMed] [Google Scholar]
  12. Komatsu S., Murai N., Totsukawa G., Abe M., Akasaka K., Shimada H., Hosoya H. Identification of MAPKAPK homolog (MAPKAPK-4) as a myosin II regulatory light-chain kinase in sea urchin egg extracts. Arch Biochem Biophys. 1997 Jul 1;343(1):55–62. doi: 10.1006/abbi.1997.9966. [DOI] [PubMed] [Google Scholar]
  13. Komatsu S., Yano T., Shibata M., Tuft R. A., Ikebe M. Effects of the regulatory light chain phosphorylation of myosin II on mitosis and cytokinesis of mammalian cells. J Biol Chem. 2000 Nov 3;275(44):34512–34520. doi: 10.1074/jbc.M003019200. [DOI] [PubMed] [Google Scholar]
  14. Murata-Hori M., Fukuta Y., Ueda K., Iwasaki T., Hosoya H. HeLa ZIP kinase induces diphosphorylation of myosin II regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene. 2001 Dec 13;20(57):8175–8183. doi: 10.1038/sj.onc.1205055. [DOI] [PubMed] [Google Scholar]
  15. Murata-Hori M., Fumoto K., Fukuta Y., Iwasaki T., Kikuchi A., Tatsuka M., Hosoya H. Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J Biochem. 2000 Dec;128(6):903–907. doi: 10.1093/oxfordjournals.jbchem.a022840. [DOI] [PubMed] [Google Scholar]
  16. Murata-Hori M., Suizu F., Iwasaki T., Kikuchi A., Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999 May 14;451(1):81–84. doi: 10.1016/s0014-5793(99)00550-5. [DOI] [PubMed] [Google Scholar]
  17. Okagaki T., Nakamura A., Suzuki T., Ohmi K., Kohama K. Assembly of smooth muscle myosin by the 38k protein, a homologue of a subunit of pre-mRNA splicing factor-2. J Cell Biol. 2000 Feb 21;148(4):653–663. doi: 10.1083/jcb.148.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okubo M. A., Chiba S., Nishikata T., Matsuno A., Hosoya H. Generation and characterization of a monoclonal antibody, mH1, raised against mitotic HeLa cells. Dev Growth Differ. 1999 Aug;41(4):381–389. doi: 10.1046/j.1440-169x.1999.00438.x. [DOI] [PubMed] [Google Scholar]
  19. Post P. L., DeBiasio R. L., Taylor D. L. A fluorescent protein biosensor of myosin II regulatory light chain phosphorylation reports a gradient of phosphorylated myosin II in migrating cells. Mol Biol Cell. 1995 Dec;6(12):1755–1768. doi: 10.1091/mbc.6.12.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saitoh T., Takemura S., Ueda K., Hosoya H., Nagayama M., Haga H., Kawabata K., Yamagishi A., Takahashi M. Differential localization of non-muscle myosin II isoforms and phosphorylated regulatory light chains in human MRC-5 fibroblasts. FEBS Lett. 2001 Dec 14;509(3):365–369. doi: 10.1016/s0014-5793(01)03186-6. [DOI] [PubMed] [Google Scholar]
  21. Sells M. A., Boyd J. T., Chernoff J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol. 1999 May 17;145(4):837–849. doi: 10.1083/jcb.145.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shirinsky V. P., Vorotnikov A. V., Birukov K. G., Nanaev A. K., Collinge M., Lukas T. J., Sellers J. R., Watterson D. M. A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP. J Biol Chem. 1993 Aug 5;268(22):16578–16583. [PubMed] [Google Scholar]
  23. Shoemaker M. O., Lau W., Shattuck R. L., Kwiatkowski A. P., Matrisian P. E., Guerra-Santos L., Wilson E., Lukas T. J., Van Eldik L. J., Watterson D. M. Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity. J Cell Biol. 1990 Sep;111(3):1107–1125. doi: 10.1083/jcb.111.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suizu F., Ueda K., Iwasaki T., Murata-Hori M., Hosoya H. Activation of actin-activated MgATPase activity of myosin II by phosphorylation with MAPK-activated protein kinase-1b (RSK-2). J Biochem. 2000 Sep;128(3):435–440. doi: 10.1093/oxfordjournals.jbchem.a022771. [DOI] [PubMed] [Google Scholar]
  25. Sweeney H. L., Yang Z., Zhi G., Stull J. T., Trybus K. M. Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1490–1494. doi: 10.1073/pnas.91.4.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ueda Kozue, Murata-Hori Maki, Tatsuka Masaaki, Hosoya Hiroshi. Rho-kinase contributes to diphosphorylation of myosin II regulatory light chain in nonmuscle cells. Oncogene. 2002 Aug 29;21(38):5852–5860. doi: 10.1038/sj.onc.1205747. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES