Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):409–415. doi: 10.1042/BJ20021140

Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

Toshihiro Yagi 1, Edurne Baroja-Fernández 1, Ryuji Yamamoto 1, Francisco José Muñoz 1, Takashi Akazawa 1, Kyoung Su Hong 1, Javier Pozueta-Romero 1
PMCID: PMC1223183  PMID: 12429023

Abstract

A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.

Full Text

The Full Text of this article is available as a PDF (382.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney E. R., Evans W. H., Parkhouse R. M. Location of nucleotide pyrophosphatase and alkaline phosphodiesterase activities on the lymphocyte surface membrane. Biochem J. 1976 Nov;159(2):293–299. doi: 10.1042/bj1590293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachorik P. S., Dietrich L. S. The purification and properties of detergent-solubilized rat liver nucleotide pyrophosphatase. J Biol Chem. 1972 Aug 25;247(16):5071–5078. [PubMed] [Google Scholar]
  3. Beacham I. R., Wilson M. S. Studies on the UDP-sugar hydrolases from Escherichia coli and Salmonella typhimurium. Arch Biochem Biophys. 1982 Oct 15;218(2):603–608. doi: 10.1016/0003-9861(82)90385-x. [DOI] [PubMed] [Google Scholar]
  4. Belanger A. E., Hatfull G. F. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol. 1999 Nov;181(21):6670–6678. doi: 10.1128/jb.181.21.6670-6678.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger S. A., Rowan K., Morrison H. D., Ziltener H. J. Identification of a bacterial inhibitor of protein kinases. Mechanism and role in host cell invasion. J Biol Chem. 1996 Sep 20;271(38):23431–23437. doi: 10.1074/jbc.271.38.23431. [DOI] [PubMed] [Google Scholar]
  6. Bessman M. J., Frick D. N., O'Handley S. F. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem. 1996 Oct 11;271(41):25059–25062. doi: 10.1074/jbc.271.41.25059. [DOI] [PubMed] [Google Scholar]
  7. Bollen M., Gijsbers R., Ceulemans H., Stalmans W., Stefan C. Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol. 2000;35(6):393–432. doi: 10.1080/10409230091169249. [DOI] [PubMed] [Google Scholar]
  8. Bollen M., Keppens S., Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998 Nov 15;336(Pt 1):19–31. doi: 10.1042/bj3360019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burns D. M., Abraham L. J., Beacham I. R. Characterization of the ush gene of Escherichia coli and its protein products. Gene. 1983 Nov;25(2-3):343–353. doi: 10.1016/0378-1119(83)90239-1. [DOI] [PubMed] [Google Scholar]
  10. Canales J., Pinto R. M., Costas M. J., Hernández M. T., Miró A., Bernet D., Fernández A., Cameselle J. C. Rat liver nucleoside diphosphosugar or diphosphoalcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: substrate specificities of Mg(2+)-and/or Mn(2+)-dependent hydrolases acting on ADP-ribose. Biochim Biophys Acta. 1995 Jan 19;1246(2):167–177. doi: 10.1016/0167-4838(94)00191-i. [DOI] [PubMed] [Google Scholar]
  11. Chang H. Y., Peng H. L., Chao Y. C., Duggleby R. G. The importance of conserved residues in human liver UDPglucose pyrophosphorylase. Eur J Biochem. 1996 Mar 1;236(2):723–728. doi: 10.1111/j.1432-1033.1996.t01-1-00723.x. [DOI] [PubMed] [Google Scholar]
  12. Chaves-Olarte E., Florin I., Boquet P., Popoff M., von Eichel-Streiber C., Thelestam M. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. J Biol Chem. 1996 Mar 22;271(12):6925–6932. doi: 10.1074/jbc.271.12.6925. [DOI] [PubMed] [Google Scholar]
  13. Chaves-Olarte E., Weidmann M., Eichel-Streiber C., Thelestam M. Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J Clin Invest. 1997 Oct 1;100(7):1734–1741. doi: 10.1172/JCI119698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ciereszko I., Johansson H., Kleczkowski L. A. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J. 2001 Feb 15;354(Pt 1):67–72. doi: 10.1042/0264-6021:3540067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flores-Díaz M., Alape-Girón A., Persson B., Pollesello P., Moos M., von Eichel-Streiber C., Thelestam M., Florin I. Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. J Biol Chem. 1997 Sep 19;272(38):23784–23791. doi: 10.1074/jbc.272.38.23784. [DOI] [PubMed] [Google Scholar]
  16. Fukui S., Yoshida H., Tanaka T., Sakano T., Usui T., Yamashina I. Glycosaminoglycan synthesis by cultured skin fibroblasts from a patient with Lowe's syndrome. J Biol Chem. 1981 Oct 25;256(20):10313–10318. [PubMed] [Google Scholar]
  17. Funakoshi I., Kato H., Horie K., Yano T., Hori Y., Kobayashi H., Inoue T., Suzuki H., Fukui S., Tsukahara M. Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. Arch Biochem Biophys. 1992 May 15;295(1):180–187. doi: 10.1016/0003-9861(92)90504-p. [DOI] [PubMed] [Google Scholar]
  18. Gabelli S. B., Bianchet M. A., Bessman M. J., Amzel L. M. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol. 2001 May;8(5):467–472. doi: 10.1038/87647. [DOI] [PubMed] [Google Scholar]
  19. Gasmi L., Cartwright J. L., McLennan A. G. Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif. Biochem J. 1999 Dec 1;344(Pt 2):331–337. [PMC free article] [PubMed] [Google Scholar]
  20. Gaudet G., Forano E., Dauphin G., Delort A. M. Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation. Eur J Biochem. 1992 Jul 1;207(1):155–162. doi: 10.1111/j.1432-1033.1992.tb17032.x. [DOI] [PubMed] [Google Scholar]
  21. Gijsbers R., Ceulemans H., Stalmans W., Bollen M. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem. 2001 Jan 12;276(2):1361–1368. doi: 10.1074/jbc.M007552200. [DOI] [PubMed] [Google Scholar]
  22. Glaser L., Melo A., Paul R. Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. J Biol Chem. 1967 Apr 25;242(8):1944–1954. [PubMed] [Google Scholar]
  23. Gu H. F., Almgren P., Lindholm E., Frittitta L., Pizzuti A., Trischitta V., Groop L. C. Association between the human glycoprotein PC-1 gene and elevated glucose and insulin levels in a paired-sibling analysis. Diabetes. 2000 Sep;49(9):1601–1603. doi: 10.2337/diabetes.49.9.1601. [DOI] [PubMed] [Google Scholar]
  24. Guedon E., Desvaux M., Petitdemange H. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J Bacteriol. 2000 Apr;182(7):2010–2017. doi: 10.1128/jb.182.7.2010-2017.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Guida L., Zocchi E., Franco L., Benatti U., De Flora A. Presence and turnover of adenosine diphosphate ribose in human erythrocytes. Biochem Biophys Res Commun. 1992 Oct 15;188(1):402–408. doi: 10.1016/0006-291x(92)92399-i. [DOI] [PubMed] [Google Scholar]
  26. Hickman S., Wong-Yip Y. P., Rebbe N. F., Greco J. M. Formation of lipid-linked oligosaccharides by MOPC 315 plasmacytoma cells. Decreased synthesis by a nonsecretory variant. J Biol Chem. 1985 May 25;260(10):6098–6106. [PubMed] [Google Scholar]
  27. Hosoda N., Hoshino S. I., Kanda Y., Katada T. Inhibition of phosphodiesterase/pyrophosphatase activity of PC-1 by its association with glycosaminoglycans. Eur J Biochem. 1999 Oct;265(2):763–770. doi: 10.1046/j.1432-1327.1999.00779.x. [DOI] [PubMed] [Google Scholar]
  28. Johnson K., Vaingankar S., Chen Y., Moffa A., Goldring M. B., Sano K., Jin-Hua P., Sali A., Goding J., Terkeltaub R. Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum. 1999 Sep;42(9):1986–1997. doi: 10.1002/1529-0131(199909)42:9<1986::AID-ANR26>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  29. Laughlin M. R., Petit W. A., Jr, Dizon J. M., Shulman R. G., Barrett E. J. NMR measurements of in vivo myocardial glycogen metabolism. J Biol Chem. 1988 Feb 15;263(5):2285–2291. [PubMed] [Google Scholar]
  30. Maddux B. A., Goldfine I. D. Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes. 2000 Jan;49(1):13–19. doi: 10.2337/diabetes.49.1.13. [DOI] [PubMed] [Google Scholar]
  31. Maddux B. A., Sbraccia P., Kumakura S., Sasson S., Youngren J., Fisher A., Spencer S., Grupe A., Henzel W., Stewart T. A. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature. 1995 Feb 2;373(6513):448–451. doi: 10.1038/373448a0. [DOI] [PubMed] [Google Scholar]
  32. Massillon D., Bollen M., De Wulf H., Overloop K., Vanstapel F., Van Hecke P., Stalmans W. Demonstration of a glycogen/glucose 1-phosphate cycle in hepatocytes from fasted rats. Selective inactivation of phosphorylase by 2-deoxy-2-fluoro-alpha-D-glucopyranosyl fluoride. J Biol Chem. 1995 Aug 18;270(33):19351–19356. doi: 10.1074/jbc.270.33.19351. [DOI] [PubMed] [Google Scholar]
  33. Moreno-Bruna B., Baroja-Fernández E., Muñoz F. J., Bastarrica-Berasategui A., Zandueta-Criado A., Rodriguez-López M., Lasa I., Akazawa T., Pozueta-Romero J. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A. 2001 Jun 19;98(14):8128–8132. doi: 10.1073/pnas.131214098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakai K., Kanehisa M. Expert system for predicting protein localization sites in gram-negative bacteria. Proteins. 1991;11(2):95–110. doi: 10.1002/prot.340110203. [DOI] [PubMed] [Google Scholar]
  35. Nelson J. D., Jato-Rodriguez J. J., Labrie F., Mookerjea S. Glycosyltransferase and UDP-galactose pyrophosphatase activities in the endometrium during oestrous cycle of the rat. J Endocrinol. 1977 Apr;73(1):53–58. doi: 10.1677/joe.0.0730053. [DOI] [PubMed] [Google Scholar]
  36. O'Handley S. F., Frick D. N., Dunn C. A., Bessman M. J. Orf186 represents a new member of the Nudix hydrolases, active on adenosine(5')triphospho(5')adenosine, ADP-ribose, and NADH. J Biol Chem. 1998 Feb 6;273(6):3192–3197. doi: 10.1074/jbc.273.6.3192. [DOI] [PubMed] [Google Scholar]
  37. Pitcher J., Smythe C., Cohen P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem. 1988 Sep 15;176(2):391–395. doi: 10.1111/j.1432-1033.1988.tb14294.x. [DOI] [PubMed] [Google Scholar]
  38. Rebbe N. F., Tong B. D., Finley E. M., Hickman S. Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5192–5196. doi: 10.1073/pnas.88.12.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rodriguez-López M., Baroja-Fernández E., Zandueta-Criado A., Pozueta-Romero J. Adenosine diphosphate glucose pyrophosphatase: A plastidial phosphodiesterase that prevents starch biosynthesis. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8705–8710. doi: 10.1073/pnas.120168097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SCHLISELFELD L. H., VANEYS J., TOUSTER O. THE PURIFICATION AND PROPERTIES OF A NUCLEOTIDE PYROPHOSPHATASE OF RAT LIVER NUCLEI. J Biol Chem. 1965 Feb;240:811–818. [PubMed] [Google Scholar]
  41. Seoane J., Trinh K., O'Doherty R. M., Gómez-Foix A. M., Lange A. J., Newgard C. B., Guinovart J. J. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J Biol Chem. 1997 Oct 24;272(43):26972–26977. doi: 10.1074/jbc.272.43.26972. [DOI] [PubMed] [Google Scholar]
  42. Skidmore J., Trams E. G. Nucleotide pyrophosphatase activity of rat liver plasma membranes. Biochim Biophys Acta. 1970;219(1):93–103. doi: 10.1016/0005-2736(70)90064-7. [DOI] [PubMed] [Google Scholar]
  43. Van Dijk W., Lasthuis A. M., Trippelvitz L. A., Muilerman H. G. Increased glycosylation capacity in regenerating rat liver is paralleled by decreased activities of CMP-N-acetylneuraminate hydrolase and UDP-galactose pyrophosphatase. Biochem J. 1983 Sep 15;214(3):1003–1006. doi: 10.1042/bj2141003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wain Hester M., Bruford Elspeth A., Lovering Ruth C., Lush Michael J., Wright Mathew W., Povey Sue. Guidelines for human gene nomenclature. Genomics. 2002 Apr;79(4):464–470. doi: 10.1006/geno.2002.6748. [DOI] [PubMed] [Google Scholar]
  45. Wolfsdorf J. I., Holm I. A., Weinstein D. A. Glycogen storage diseases. Phenotypic, genetic, and biochemical characteristics, and therapy. Endocrinol Metab Clin North Am. 1999 Dec;28(4):801–823. doi: 10.1016/s0889-8529(05)70103-1. [DOI] [PubMed] [Google Scholar]
  46. Xu W., Shen J., Dunn C. A., Desai S., Bessman M. J. The Nudix hydrolases of Deinococcus radiodurans. Mol Microbiol. 2001 Jan;39(2):286–290. doi: 10.1046/j.1365-2958.2001.02267.x. [DOI] [PubMed] [Google Scholar]
  47. Yano T., Horie K., Kanamoto R., Kitagawa H., Funakoshi I., Yamashina I. Immunoaffinity purification and characterization of nucleotide pyrophosphatase from human placenta. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1061–1069. doi: 10.1016/s0006-291x(87)80178-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES