Abstract
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Full Text
The Full Text of this article is available as a PDF (203.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer E. K., Keegstra K. Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomembr. 1990 Dec;22(6):789–810. doi: 10.1007/BF00786931. [DOI] [PubMed] [Google Scholar]
- Asai K., Fujisaki S., Nishimura Y., Nishino T., Okada K., Nakagawa T., Kawamukai M., Matsuda H. The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):340–345. doi: 10.1006/bbrc.1994.1933. [DOI] [PubMed] [Google Scholar]
- Ashby M. N., Edwards P. A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem. 1990 Aug 5;265(22):13157–13164. [PubMed] [Google Scholar]
- Bonk M., Hoffmann B., Von Lintig J., Schledz M., Al-Babili S., Hobeika E., Kleinig H., Beyer P. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem. 1997 Aug 1;247(3):942–950. doi: 10.1111/j.1432-1033.1997.00942.x. [DOI] [PubMed] [Google Scholar]
- Bouvier F., Suire C., d'Harlingue A., Backhaus R. A., Camara B. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J. 2000 Oct;24(2):241–252. doi: 10.1046/j.1365-313x.2000.00875.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Casey R. P. Membrane reconstitution of the energy-conserving enzymes of oxidative phosphorylation. Biochim Biophys Acta. 1984 Dec 17;768(3-4):319–347. doi: 10.1016/0304-4173(84)90021-1. [DOI] [PubMed] [Google Scholar]
- Cunillera N., Arró M., Delourme D., Karst F., Boronat A., Ferrer A. Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem. 1996 Mar 29;271(13):7774–7780. doi: 10.1074/jbc.271.13.7774. [DOI] [PubMed] [Google Scholar]
- Cunillera N., Boronat A., Ferrer A. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem. 1997 Jun 13;272(24):15381–15388. doi: 10.1074/jbc.272.24.15381. [DOI] [PubMed] [Google Scholar]
- Delourme D., Lacroute F., Karst F. Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant Mol Biol. 1994 Dec;26(6):1867–1873. doi: 10.1007/BF00019499. [DOI] [PubMed] [Google Scholar]
- Disch A., Hemmerlin A., Bach T. J., Rohmer M. Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J. 1998 Apr 15;331(Pt 2):615–621. doi: 10.1042/bj3310615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emanuelsson O., Nielsen H., von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999 May;8(5):978–984. doi: 10.1110/ps.8.5.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frei B., Kim M. C., Ames B. N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4879–4883. doi: 10.1073/pnas.87.12.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii H., Koyama T., Ogura K. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta. 1982 Sep 14;712(3):716–718. [PubMed] [Google Scholar]
- Gaffe J., Bru J. P., Causse M., Vidal A., Stamitti-Bert L., Carde J. P., Gallusci P. LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiol. 2000 Aug;123(4):1351–1362. doi: 10.1104/pp.123.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hefner J., Ketchum R. E., Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys. 1998 Dec 1;360(1):62–74. doi: 10.1006/abbi.1998.0926. [DOI] [PubMed] [Google Scholar]
- Hinkle P. C., McCarty R. E. How cells make ATP. Sci Am. 1978 Mar;238(3):104-17, 121-3. doi: 10.1038/scientificamerican0378-104. [DOI] [PubMed] [Google Scholar]
- Hirokawa T., Boon-Chieng S., Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379. doi: 10.1093/bioinformatics/14.4.378. [DOI] [PubMed] [Google Scholar]
- Hirooka K., Kato T., Matsu-ura J., Hemmi H., Nishino T. The role of histidine-114 of Ssulfolobus acidocaldarius geranylgeranyl diphosphate synthase in chain-length determination. FEBS Lett. 2000 Sep 8;481(1):68–72. doi: 10.1016/s0014-5793(00)01972-4. [DOI] [PubMed] [Google Scholar]
- Hirooka K., Ohnuma S., Koike-Takeshita A., Koyama T., Nishino T. Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus. Eur J Biochem. 2000 Jul;267(14):4520–4528. doi: 10.1046/j.1432-1327.2000.01502.x. [DOI] [PubMed] [Google Scholar]
- Hope A. B. The chloroplast cytochrome bf complex: a critical focus on function. Biochim Biophys Acta. 1993 Jun 10;1143(1):1–22. doi: 10.1016/0005-2728(93)90210-7. [DOI] [PubMed] [Google Scholar]
- Hundal T., Forsmark-Andrée P., Ernster L., Andersson B. Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys. 1995 Dec 1;324(1):117–122. doi: 10.1006/abbi.1995.9920. [DOI] [PubMed] [Google Scholar]
- Jemiota-Rzemińska M., Latowski D., Strzałka K. Incorporation of plastoquinone and ubiquinone into liposome membranes studied by HPLC analysis. The effect of side chain length and redox state of quinone. Chem Phys Lipids. 2001 Mar;110(1):85–94. doi: 10.1016/s0009-3084(00)00227-9. [DOI] [PubMed] [Google Scholar]
- Koike-Takeshita A., Koyama T., Obata S., Ogura K. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis. J Biol Chem. 1995 Aug 4;270(31):18396–18400. doi: 10.1074/jbc.270.31.18396. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lichtenthaler H. K., Schwender J., Disch A., Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997 Jan 6;400(3):271–274. doi: 10.1016/s0014-5793(96)01404-4. [DOI] [PubMed] [Google Scholar]
- Ogura Kyozo, Koyama Tanetoshi. Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev. 1998 Jun 18;98(4):1263–1276. doi: 10.1021/cr9600464. [DOI] [PubMed] [Google Scholar]
- Ohnuma S. i., Hirooka K., Ohto C., Nishino T. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem. 1997 Feb 21;272(8):5192–5198. doi: 10.1074/jbc.272.8.5192. [DOI] [PubMed] [Google Scholar]
- Ohnuma S. i., Narita K., Nakazawa T., Ishida C., Takeuchi Y., Ohto C., Nishino T. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem. 1996 Nov 29;271(48):30748–30754. doi: 10.1074/jbc.271.48.30748. [DOI] [PubMed] [Google Scholar]
- Ohnuma S., Hirooka K., Hemmi H., Ishida C., Ohto C., Nishino T. Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essential amino acid residues for chain length determination of prenyltransferase reaction. J Biol Chem. 1996 Aug 2;271(31):18831–18837. doi: 10.1074/jbc.271.31.18831. [DOI] [PubMed] [Google Scholar]
- Ohnuma S., Hirooka K., Tsuruoka N., Yano M., Ohto C., Nakane H., Nishino T. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J Biol Chem. 1998 Oct 9;273(41):26705–26713. doi: 10.1074/jbc.273.41.26705. [DOI] [PubMed] [Google Scholar]
- Okada K., Kainou T., Tanaka K., Nakagawa T., Matsuda H., Kawamukai M. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur J Biochem. 1998 Jul 1;255(1):52–59. doi: 10.1046/j.1432-1327.1998.2550052.x. [DOI] [PubMed] [Google Scholar]
- Okada K., Kamiya Y., Zhu X., Suzuki K., Tanaka K., Nakagawa T., Matsuda H., Kawamukai M. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae. J Bacteriol. 1997 Oct;179(19):5992–5998. doi: 10.1128/jb.179.19.5992-5998.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada K., Saito T., Nakagawa T., Kawamukai M., Kamiya Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 2000 Apr;122(4):1045–1056. doi: 10.1104/pp.122.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osowska-Rogers S., Swiezewska E., Andersson B., Dallner G. The endoplasmic reticulum-Golgi system is a major site of plastoquinone synthesis in spinach leaves. Biochem Biophys Res Commun. 1994 Nov 30;205(1):714–721. doi: 10.1006/bbrc.1994.2724. [DOI] [PubMed] [Google Scholar]
- Sakaihara T., Honda A., Tateyama S., Sagami H. Subcellular fractionation of polyprenyl diphosphate synthase activities responsible for the syntheses of polyprenols and dolichols in spinach leaves. J Biochem. 2000 Dec;128(6):1073–1078. doi: 10.1093/oxfordjournals.jbchem.a022835. [DOI] [PubMed] [Google Scholar]
- Scolnik P. A., Bartley G. E. Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiol. 1994 Apr;104(4):1469–1470. doi: 10.1104/pp.104.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soll J., Schultz G., Joyard J., Douce R., Block M. A. Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys. 1985 Apr;238(1):290–299. doi: 10.1016/0003-9861(85)90167-5. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Okada K., Kamiya Y., Zhu X. F., Nakagawa T., Kawamukai M., Matsuda H. Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J Biochem. 1997 Mar;121(3):496–505. doi: 10.1093/oxfordjournals.jbchem.a021614. [DOI] [PubMed] [Google Scholar]
- Swiezewska E., Dallner G., Andersson B., Ernster L. Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J Biol Chem. 1993 Jan 15;268(2):1494–1499. [PubMed] [Google Scholar]
- Szkopińska A. Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization. Acta Biochim Pol. 2000;47(2):469–480. [PubMed] [Google Scholar]
- Tarshis L. C., Proteau P. J., Kellogg B. A., Sacchettini J. C., Poulter C. D. Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15018–15023. doi: 10.1073/pnas.93.26.15018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarshis L. C., Yan M., Poulter C. D., Sacchettini J. C. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry. 1994 Sep 13;33(36):10871–10877. doi: 10.1021/bi00202a004. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., Ohnuma S. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci. 1999 Nov;24(11):445–451. doi: 10.1016/s0968-0004(99)01464-4. [DOI] [PubMed] [Google Scholar]
- Wanke M., Dallner G., Swiezewska E. Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. Biochim Biophys Acta. 2000 Jan 15;1463(1):188–194. doi: 10.1016/s0005-2736(99)00191-1. [DOI] [PubMed] [Google Scholar]