Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):579–589. doi: 10.1042/BJ20021433

In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6.

Christopher H George 1, Rina Sorathia 1, Benedicte M A Bertrand 1, F Anthony Lai 1
PMCID: PMC1223191  PMID: 12443530

Abstract

The ryanodine receptor complex (RyR), a large oligomeric assembly that functions as a Ca(2+)-release channel in the sarcoplasmic reticulum (SR)/endoplasmic reticulum (ER), comprises four RyR subunits and four FK506-binding proteins (FKBP). The precise mode of interaction and modulation of the cardiac RyR (RyR2) channel by FKBP12/FKBP12.6 remains to be fully defined. We have generated a series of Chinese-hamster ovary (CHO) cell lines stably expressing discrete levels of recombinant human RyR2 (hRyR2) (CHO(hRyR2)). Confocal microscopy of CHO(hRyR2) cells co-expressing either FKBP12 or FKBP12.6 demonstrated that FKBP12.6 was sequestered from the cytoplasm to ER membranes as the cellular levels of hRyR2 increased. There was negligible hRyR2-induced subcellular redistribution of FKBP12. The magnitude of Ca(2+) release in CHO(hRyR2) cells in response to stimulation by 4-chloro- m -cresol was in direct proportion to the expression levels of hRyR2. However, in CHO(hRyR2) cells co-expressing FKBP12.6, Ca(2+) release triggered by the addition of 4-chloro- m -cresol was markedly decreased. In contrast, co-expression of FKBP12 did not affect agonist-induced Ca(2+) release in CHO(hRyR2) cells. Resting cytoplasmic [Ca(2+)] in CHO(hRyR2) remained unaltered after co-expression of FKBP12 or FKBP12.6, but estimation of the ER Ca(2+) load status showed that co-expression of FKBP12.6, but not FKBP12, promoted superfilling of the ER Ca(2+) store which could not be released by RyR2 after agonist activation. The effects of FKBP12.6 on hRyR2-mediated intracellular Ca(2+) handling could be antagonized using rapamycin (5 microM). These results suggest that FKBP12.6 associates with hRyR2 in situ to modulate precisely the functionality of hRyR2 Ca(2+)-release channel.

Full Text

The Full Text of this article is available as a PDF (364.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barg S., Copello J. A., Fleischer S. Different interactions of cardiac and skeletal muscle ryanodine receptors with FK-506 binding protein isoforms. Am J Physiol. 1997 May;272(5 Pt 1):C1726–C1733. doi: 10.1152/ajpcell.1997.272.5.C1726. [DOI] [PubMed] [Google Scholar]
  2. Bhat M. B., Hayek S. M., Zhao J., Zang W., Takeshima H., Wier W. G., Ma J. Expression and functional characterization of the cardiac muscle ryanodine receptor Ca(2+) release channel in Chinese hamster ovary cells. Biophys J. 1999 Aug;77(2):808–816. doi: 10.1016/S0006-3495(99)76933-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bultynck G., De Smet P., Rossi D., Callewaert G., Missiaen L., Sorrentino V., De Smedt H., Parys J. B. Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochem J. 2001 Mar 1;354(Pt 2):413–422. doi: 10.1042/0264-6021:3540413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cameron A. M., Nucifora F. C., Jr, Fung E. T., Livingston D. J., Aldape R. A., Ross C. A., Snyder S. H. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400-1401) and anchors calcineurin to this FK506-like domain. J Biol Chem. 1997 Oct 31;272(44):27582–27588. doi: 10.1074/jbc.272.44.27582. [DOI] [PubMed] [Google Scholar]
  5. Cameron A. M., Steiner J. P., Sabatini D. M., Kaplin A. I., Walensky L. D., Snyder S. H. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784–1788. doi: 10.1073/pnas.92.5.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmody M., Mackrill J. J., Sorrentino V., O'Neill C. FKBP12 associates tightly with the skeletal muscle type 1 ryanodine receptor, but not with other intracellular calcium release channels. FEBS Lett. 2001 Sep 7;505(1):97–102. doi: 10.1016/s0014-5793(01)02787-9. [DOI] [PubMed] [Google Scholar]
  7. Chu A., Dixon M. C., Saito A., Seiler S., Fleischer S. Isolation of sarcoplasmic reticulum fractions referable to longitudinal tubules and junctional terminal cisternae from rabbit skeletal muscle. Methods Enzymol. 1988;157:36–46. doi: 10.1016/0076-6879(88)57066-0. [DOI] [PubMed] [Google Scholar]
  8. Currie S., Smith G. L. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res. 1999 Jan;41(1):135–146. doi: 10.1016/s0008-6363(98)00241-7. [DOI] [PubMed] [Google Scholar]
  9. Du G. G., Imredy J. P., MacLennan D. H. Characterization of recombinant rabbit cardiac and skeletal muscle Ca2+ release channels (ryanodine receptors) with a novel [3H]ryanodine binding assay. J Biol Chem. 1998 Dec 11;273(50):33259–33266. doi: 10.1074/jbc.273.50.33259. [DOI] [PubMed] [Google Scholar]
  10. Du G. G., MacLennan D. H. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1998 Nov 27;273(48):31867–31872. doi: 10.1074/jbc.273.48.31867. [DOI] [PubMed] [Google Scholar]
  11. Eu J. P., Sun J., Xu L., Stamler J. S., Meissner G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell. 2000 Aug 18;102(4):499–509. doi: 10.1016/s0092-8674(00)00054-4. [DOI] [PubMed] [Google Scholar]
  12. Fessenden J. D., Wang Y., Moore R. A., Chen S. R., Allen P. D., Pessah I. N. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J. 2000 Nov;79(5):2509–2525. doi: 10.1016/S0006-3495(00)76492-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Ikemoto N., Yamamoto T. Postulated role of inter-domain interaction within the ryanodine receptor in Ca(2+) channel regulation. Trends Cardiovasc Med. 2000 Oct;10(7):310–316. doi: 10.1016/s1050-1738(01)00067-6. [DOI] [PubMed] [Google Scholar]
  15. Jeyakumar L. H., Ballester L., Cheng D. S., McIntyre J. O., Chang P., Olivey H. E., Rollins-Smith L., Barnett J. V., Murray K., Xin H. B. FKBP binding characteristics of cardiac microsomes from diverse vertebrates. Biochem Biophys Res Commun. 2001 Mar 9;281(4):979–986. doi: 10.1006/bbrc.2001.4444. [DOI] [PubMed] [Google Scholar]
  16. Kaftan E., Marks A. R., Ehrlich B. E. Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ Res. 1996 Jun;78(6):990–997. doi: 10.1161/01.res.78.6.990. [DOI] [PubMed] [Google Scholar]
  17. Kukkonen J. P., Lund P. E., Akerman K. E. 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca(2+) discharge and store-operated Ca(2+) influx. Cell Calcium. 2001 Aug;30(2):117–129. doi: 10.1054/ceca.2001.0219. [DOI] [PubMed] [Google Scholar]
  18. Laitinen P. J., Brown K. M., Piippo K., Swan H., Devaney J. M., Brahmbhatt B., Donarum E. A., Marino M., Tiso N., Viitasalo M. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001 Jan 30;103(4):485–490. doi: 10.1161/01.cir.103.4.485. [DOI] [PubMed] [Google Scholar]
  19. MacKrill J. J. Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J. 1999 Feb 1;337(Pt 3):345–361. [PMC free article] [PubMed] [Google Scholar]
  20. Mackrill J. J., Challiss R. A., O'connell D. A., Lai F. A., Nahorski S. R. Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. Biochem J. 1997 Oct 1;327(Pt 1):251–258. doi: 10.1042/bj3270251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manunta M., Rossi D., Simeoni I., Butelli E., Romanin C., Sorrentino V., Schindler H. ATP-induced activation of expressed RyR3 at low free calcium. FEBS Lett. 2000 Apr 14;471(2-3):256–260. doi: 10.1016/s0014-5793(00)01385-5. [DOI] [PubMed] [Google Scholar]
  22. Marks Andrew R., Marx Steven O., Reiken Steven. Regulation of ryanodine receptors via macromolecular complexes: a novel role for leucine/isoleucine zippers. Trends Cardiovasc Med. 2002 May;12(4):166–170. doi: 10.1016/s1050-1738(02)00156-1. [DOI] [PubMed] [Google Scholar]
  23. Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000 May 12;101(4):365–376. doi: 10.1016/s0092-8674(00)80847-8. [DOI] [PubMed] [Google Scholar]
  24. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  25. Monkawa T., Miyawaki A., Sugiyama T., Yoneshima H., Yamamoto-Hino M., Furuichi T., Saruta T., Hasegawa M., Mikoshiba K. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem. 1995 Jun 16;270(24):14700–14704. doi: 10.1074/jbc.270.24.14700. [DOI] [PubMed] [Google Scholar]
  26. Ono K., Yano M., Ohkusa T., Kohno M., Hisaoka T., Tanigawa T., Kobayashi S., Kohno M., Matsuzaki M. Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca(2+) release in heart failure. Cardiovasc Res. 2000 Nov;48(2):323–331. doi: 10.1016/s0008-6363(00)00191-7. [DOI] [PubMed] [Google Scholar]
  27. Priori S. G., Napolitano C., Tiso N., Memmi M., Vignati G., Bloise R., Sorrentino V., Danieli G. A. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001 Jan 16;103(2):196–200. doi: 10.1161/01.cir.103.2.196. [DOI] [PubMed] [Google Scholar]
  28. Roderick H. L., Campbell A. K., Llewellyn D. H. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett. 1997 Mar 24;405(2):181–185. doi: 10.1016/s0014-5793(97)00183-x. [DOI] [PubMed] [Google Scholar]
  29. Samsó M., Trujillo R., Gurrola G. B., Valdivia H. H., Wagenknecht T. Three-dimensional location of the imperatoxin A binding site on the ryanodine receptor. J Cell Biol. 1999 Jul 26;146(2):493–499. doi: 10.1083/jcb.146.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shou W., Aghdasi B., Armstrong D. L., Guo Q., Bao S., Charng M. J., Mathews L. M., Schneider M. D., Hamilton S. L., Matzuk M. M. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998 Jan 29;391(6666):489–492. doi: 10.1038/35146. [DOI] [PubMed] [Google Scholar]
  31. Snyder S. H., Sabatini D. M., Lai M. M., Steiner J. P., Hamilton G. S., Suzdak P. D. Neural actions of immunophilin ligands. Trends Pharmacol Sci. 1998 Jan;19(1):21–26. doi: 10.1016/s0165-6147(97)01146-2. [DOI] [PubMed] [Google Scholar]
  32. Takeshima H., Iino M., Takekura H., Nishi M., Kuno J., Minowa O., Takano H., Noda T. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994 Jun 16;369(6481):556–559. doi: 10.1038/369556a0. [DOI] [PubMed] [Google Scholar]
  33. Takeshima H., Ikemoto T., Nishi M., Nishiyama N., Shimuta M., Sugitani Y., Kuno J., Saito I., Saito H., Endo M. Generation and characterization of mutant mice lacking ryanodine receptor type 3. J Biol Chem. 1996 Aug 16;271(33):19649–19652. doi: 10.1074/jbc.271.33.19649. [DOI] [PubMed] [Google Scholar]
  34. Takeshima H., Komazaki S., Hirose K., Nishi M., Noda T., Iino M. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. EMBO J. 1998 Jun 15;17(12):3309–3316. doi: 10.1093/emboj/17.12.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takeshima H., Nishimura S., Matsumoto T., Ishida H., Kangawa K., Minamino N., Matsuo H., Ueda M., Hanaoka M., Hirose T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989 Jun 8;339(6224):439–445. doi: 10.1038/339439a0. [DOI] [PubMed] [Google Scholar]
  36. Timerman A. P., Jayaraman T., Wiederrecht G., Onoue H., Marks A. R., Fleischer S. The ryanodine receptor from canine heart sarcoplasmic reticulum is associated with a novel FK-506 binding protein. Biochem Biophys Res Commun. 1994 Jan 28;198(2):701–706. doi: 10.1006/bbrc.1994.1101. [DOI] [PubMed] [Google Scholar]
  37. Timerman A. P., Ogunbumni E., Freund E., Wiederrecht G., Marks A. R., Fleischer S. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Nov 5;268(31):22992–22999. [PubMed] [Google Scholar]
  38. Timerman A. P., Onoue H., Xin H. B., Barg S., Copello J., Wiederrecht G., Fleischer S. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem. 1996 Aug 23;271(34):20385–20391. doi: 10.1074/jbc.271.34.20385. [DOI] [PubMed] [Google Scholar]
  39. Tunwell R. E., Wickenden C., Bertrand B. M., Shevchenko V. I., Walsh M. B., Allen P. D., Lai F. A. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J. 1996 Sep 1;318(Pt 2):477–487. doi: 10.1042/bj3180477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Valdivia H. H., Kaplan J. H., Ellis-Davies G. C., Lederer W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 1995 Mar 31;267(5206):1997–2000. doi: 10.1126/science.7701323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Valdivia H. H. Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors. Trends Pharmacol Sci. 1998 Dec;19(12):479–482. doi: 10.1016/s0165-6147(98)01269-3. [DOI] [PubMed] [Google Scholar]
  42. Wagenknecht T., Grassucci R., Berkowitz J., Wiederrecht G. J., Xin H. B., Fleischer S. Cryoelectron microscopy resolves FK506-binding protein sites on the skeletal muscle ryanodine receptor. Biophys J. 1996 Apr;70(4):1709–1715. doi: 10.1016/S0006-3495(96)79733-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wagenknecht T., Radermacher M., Grassucci R., Berkowitz J., Xin H. B., Fleischer S. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem. 1997 Dec 19;272(51):32463–32471. doi: 10.1074/jbc.272.51.32463. [DOI] [PubMed] [Google Scholar]
  44. Weidelt T., Isenberg G. Augmentation of SR Ca(2+) release by rapamycin and FK506 causes K(+)-channel activation and membrane hyperpolarization in bladder smooth muscle. Br J Pharmacol. 2000 Apr;129(7):1293–1300. doi: 10.1038/sj.bjp.0703223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Williams A. J., West D. J., Sitsapesan R. Light at the end of the Ca(2+)-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels. Q Rev Biophys. 2001 Feb;34(1):61–104. doi: 10.1017/s0033583501003675. [DOI] [PubMed] [Google Scholar]
  46. Xiao R. P., Valdivia H. H., Bogdanov K., Valdivia C., Lakatta E. G., Cheng H. The immunophilin FK506-binding protein modulates Ca2+ release channel closure in rat heart. J Physiol. 1997 Apr 15;500(Pt 2):343–354. doi: 10.1113/jphysiol.1997.sp022025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xin H. B., Rogers K., Qi Y., Kanematsu T., Fleischer S. Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J Biol Chem. 1999 May 28;274(22):15315–15319. doi: 10.1074/jbc.274.22.15315. [DOI] [PubMed] [Google Scholar]
  48. Xin Hong-Bo, Senbonmatsu Takaaki, Cheng Dong-Sheng, Wang Yong-Xiao, Copello Julio A., Ji Guang-Ju, Collier Mei Lin, Deng Ke-Yu, Jeyakumar Loice H., Magnuson Mark A. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature. 2002 Mar 21;416(6878):334–338. doi: 10.1038/416334a. [DOI] [PubMed] [Google Scholar]
  49. Xu L., Eu J. P., Meissner G., Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998 Jan 9;279(5348):234–237. doi: 10.1126/science.279.5348.234. [DOI] [PubMed] [Google Scholar]
  50. Yano M., Ono K., Ohkusa T., Suetsugu M., Kohno M., Hisaoka T., Kobayashi S., Hisamatsu Y., Yamamoto T., Kohno M. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation. 2000 Oct 24;102(17):2131–2136. doi: 10.1161/01.cir.102.17.2131. [DOI] [PubMed] [Google Scholar]
  51. Yin C. C., Lai F. A. Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol. 2000 Sep;2(9):669–671. doi: 10.1038/35023625. [DOI] [PubMed] [Google Scholar]
  52. Zhao L., Sebkhi A., Nunez D. J., Long L., Haley C. S., Szpirer J., Szpirer C., Williams A. J., Wilkins M. R. Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17: evaluation of cardiac ryanodine Ryr2 receptor as a candidate. Circulation. 2001 Jan 23;103(3):442–447. doi: 10.1161/01.cir.103.3.442. [DOI] [PubMed] [Google Scholar]
  53. Zorzato F., Scutari E., Tegazzin V., Clementi E., Treves S. Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Mol Pharmacol. 1993 Dec;44(6):1192–1201. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES