Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):651–659. doi: 10.1042/BJ20021595

Molecular and biochemical characterization of the thermoactive family 1 pectate lyase from the hyperthermophilic bacterium Thermotoga maritima.

Leon D Kluskens 1, Gert-Jan W M van Alebeek 1, Alphons G J Voragen 1, Willem M de Vos 1, John van der Oost 1
PMCID: PMC1223193  PMID: 12443532

Abstract

The ability of the hyperthermophilic bacterium Thermotoga maritima to grow on pectin as a sole carbon source coincides with the secretion of a pectate lyase A (PelA) in the extracellular medium. The pel A gene of T. maritima was functionally expressed in Escherichia coli as the first heterologously produced thermophilic pectinase, and purified to homogeneity. Gel filtration indicated that the native form of PelA is tetrameric. Highest activity (422 units/mg, with a K(m) of 0.06 mM) was demonstrated on polygalacturonic acid (PGA), whereas pectins with an increasing degree of methylation were degraded at a decreasing rate. In the tradition of pectate lyases, PelA demonstrated full dependency on Ca(2+) for stability and activity. The enzyme is highly thermoactive and thermostable, operating optimally at 90 degrees C and pH 9.0, with a half-life for thermal inactivation of almost 2 h at 95 degrees C, and an apparent melting temperature of 102.5 degrees C. Detailed characterization of the product formation with PGA indicated that PelA has a unique eliminative exo-cleavage pattern liberating unsaturated trigalacturonate as the major product, in contrast with unsaturated digalacturonate for other exopectate lyases known. The unique exo-acting mode of action was supported by progression profiles of PelA on oligogalacturonides (degree of polymerization, 3-8) and the examination of the bond cleavage frequencies.

Full Text

The Full Text of this article is available as a PDF (360.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benen J. A., Kester H. C., Parenicová L., Visser J. Characterization of Aspergillus niger pectate lyase A. Biochemistry. 2000 Dec 19;39(50):15563–15569. doi: 10.1021/bi000693w. [DOI] [PubMed] [Google Scholar]
  3. Bredholt S., Sonne-Hansen J., Nielsen P., Mathrani I. M., Ahring B. K. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol. 1999 Jul;49(Pt 3):991–996. doi: 10.1099/00207713-49-3-991. [DOI] [PubMed] [Google Scholar]
  4. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  5. Chhabra Swapnil R., Shockley Keith R., Ward Donald E., Kelly Robert M. Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol. 2002 Feb;68(2):545–554. doi: 10.1128/AEM.68.2.545-554.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel R. M., Danson M. J. Assaying activity and assessing thermostability of hyperthermophilic enzymes. Methods Enzymol. 2001;334:283–293. doi: 10.1016/s0076-6879(01)34476-2. [DOI] [PubMed] [Google Scholar]
  7. Henrissat B., Heffron S. E., Yoder M. D., Lietzke S. E., Jurnak F. Functional implications of structure-based sequence alignment of proteins in the extracellular pectate lyase superfamily. Plant Physiol. 1995 Mar;107(3):963–976. doi: 10.1104/pp.107.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang C. Y., Patel B. K., Mah R. A., Baresi L. Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol. 1998 Jan;48(Pt 1):91–97. doi: 10.1099/00207713-48-1-91. [DOI] [PubMed] [Google Scholar]
  9. Kashyap D. R., Vohra P. K., Chopra S., Tewari R. Applications of pectinases in the commercial sector: a review. Bioresour Technol. 2001 May;77(3):215–227. doi: 10.1016/s0960-8524(00)00118-8. [DOI] [PubMed] [Google Scholar]
  10. Kengen S. W., Luesink E. J., Stams A. J., Zehnder A. J. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993 Apr 1;213(1):305–312. doi: 10.1111/j.1432-1033.1993.tb17763.x. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi T., Hatada Y., Suzumatsu A., Saeki K., Hakamada Y., Ito S. Highly alkaline pectate lyase Pel-4A from alkaliphilic Bacillus sp. strain P-4-N: its catalytic properties and deduced amino acid sequence. Extremophiles. 2000 Dec;4(6):377–383. doi: 10.1007/s007920070008. [DOI] [PubMed] [Google Scholar]
  12. Kozianowski G., Canganella F., Rainey F. A., Hippe H., Antranikian G. Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles. 1997 Nov;1(4):171–182. doi: 10.1007/s007920050031. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Letunic Ivica, Goodstadt Leo, Dickens Nicholas J., Doerks Tobias, Schultz Joerg, Mott Richard, Ciccarelli Francesca, Copley Richard R., Ponting Chris P., Bork Peer. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002 Jan 1;30(1):242–244. doi: 10.1093/nar/30.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mayans O., Scott M., Connerton I., Gravesen T., Benen J., Visser J., Pickersgill R., Jenkins J. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure. 1997 May 15;5(5):677–689. doi: 10.1016/s0969-2126(97)00222-0. [DOI] [PubMed] [Google Scholar]
  16. McDonough Michael A., Ryttersgaard Carsten, Bjørnvad Mads Eskelund, Lo Leggio Leila, Schülein Martin, Schrøder Glad Sanne O., Larsen Sine. Crystallization and preliminary X-ray characterization of a thermostable pectate lyase from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr. 2002 Mar 22;58(Pt 4):709–711. doi: 10.1107/s0907444902003827. [DOI] [PubMed] [Google Scholar]
  17. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999 May 27;399(6734):323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
  18. Pickersgill R., Jenkins J., Harris G., Nasser W., Robert-Baudouy J. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol. 1994 Oct;1(10):717–723. doi: 10.1038/nsb1094-717. [DOI] [PubMed] [Google Scholar]
  19. Rainey F. A., Donnison A. M., Janssen P. H., Saul D., Rodrigo A., Bergquist P. L., Daniel R. M., Stackebrandt E., Morgan H. W. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett. 1994 Jul 15;120(3):263–266. doi: 10.1111/j.1574-6968.1994.tb07043.x. [DOI] [PubMed] [Google Scholar]
  20. Sakai T., Sakamoto T., Hallaert J., Vandamme E. J. Pectin, pectinase and protopectinase: production, properties, and applications. Adv Appl Microbiol. 1993;39:213–294. doi: 10.1016/s0065-2164(08)70597-5. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shevchik V. E., Condemine G., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol. 1999 Jul;181(13):3912–3919. doi: 10.1128/jb.181.13.3912-3919.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shevchik V. E., Kester H. C., Benen J. A., Visser J., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937. J Bacteriol. 1999 Mar;181(5):1652–1663. doi: 10.1128/jb.181.5.1652-1663.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takami H., Horikoshi K. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles. 2000 Apr;4(2):99–108. doi: 10.1007/s007920050143. [DOI] [PubMed] [Google Scholar]
  26. Takao M., Nakaniwa T., Yoshikawa K., Terashita T., Sakai T. Purification and characterization of thermostable pectate lyase with protopectinase activity from thermophilic Bacillus sp. TS 47. Biosci Biotechnol Biochem. 2000 Nov;64(11):2360–2367. doi: 10.1271/bbb.64.2360. [DOI] [PubMed] [Google Scholar]
  27. Tardy F., Nasser W., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol. 1997 Apr;179(8):2503–2511. doi: 10.1128/jb.179.8.2503-2511.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Truong L. V., Tuyen H., Helmke E., Binh L. T., Schweder T. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles. 2001 Feb;5(1):35–44. doi: 10.1007/s007920000170. [DOI] [PubMed] [Google Scholar]
  29. Vieille C., Zeikus G. J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001 Mar;65(1):1–43. doi: 10.1128/MMBR.65.1.1-43.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wiegel J., Ljungdahl L. G., Rawson J. R. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol. 1979 Sep;139(3):800–810. doi: 10.1128/jb.139.3.800-810.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zehnder A. J., Huser B. A., Brock T. D., Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol. 1980 Jan;124(1):1–11. doi: 10.1007/BF00407022. [DOI] [PubMed] [Google Scholar]
  32. van Alebeek Gert-Jan W. M., Christensen Tove M. I. E., Schols Henk A., Mikkelsen Jørn D., Voragen Alphons G. J. Mode of action of pectin lyase A of Aspergillus niger on differently C(6)-substituted oligogalacturonides. J Biol Chem. 2002 May 8;277(29):25929–25936. doi: 10.1074/jbc.M202250200. [DOI] [PubMed] [Google Scholar]
  33. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES