Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):601–607. doi: 10.1042/BJ20021049

Regulation of N-glycolylneuraminic acid biosynthesis in developing pig small intestine.

Yanina N Malykh 1, Timothy P King 1, Elizabeth Logan 1, Denise Kelly 1, Roland Schauer 1, Lee Shaw 1
PMCID: PMC1223197  PMID: 12444926

Abstract

N -Glycolylneuraminic acid (Neu5Gc), an abundant sialic acid in animal glycoconjugates, is formed by the enzyme CMP-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase. The amount of Neu5Gc relative to other sialic acids is highly dependent on the species, tissue and developmental stage. Although the activity of the hydroxylase is a key factor in controlling Neu5Gc incorporation in adult animals, little is known about the regulation of hydroxylase expression and the role of this enzyme in determining changes in Neu5Gc during development. Using pig small intestine as a model system, the appearance of total sialic acid and the regulation of Neu5Gc biosynthesis during development were studied in various regions of this tissue. The amount of total sialic acid and Neu5Gc declined markedly in 2 weeks after birth. Although in subsequent developmental phases there were no positional differences in total sialic acid, a significant proximal-to-distal increase in Neu5Gc was detected. In all cases, a good correlation between the amount of Neu5Gc, the activity of the hydroxylase and the level of hydroxylase mRNA was observed. However, Western-blot analysis revealed considerable accumulation of less active enzyme in the post partum period, which persisted until adulthood. No evidence for cytosolic factors influencing the hydroxylase activity or for the formation of truncated enzyme was found, raising the possibility that other regulatory mechanisms are involved. The relevance of these results in the formation of Neu5Gc as a receptor for certain pig enteric pathogens is also discussed.

Full Text

The Full Text of this article is available as a PDF (206.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angata Takashi, Varki Ajit. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev. 2002 Feb;102(2):439–469. doi: 10.1021/cr000407m. [DOI] [PubMed] [Google Scholar]
  2. Biol M. C., Martin A., Louisot P. Nutritional and developmental regulation of glycosylation processes in digestive organs. Biochimie. 1992 Jan;74(1):13–24. doi: 10.1016/0300-9084(92)90180-m. [DOI] [PubMed] [Google Scholar]
  3. Bouhours D., Bouhours J. F., Larson G., Hansson G. C. Regional differences in the appearance of adult-type glycosphingolipids in the small intestine of inbred rats at weaning time. Arch Biochem Biophys. 1990 Oct;282(1):147–151. doi: 10.1016/0003-9861(90)90098-j. [DOI] [PubMed] [Google Scholar]
  4. Bouhours J. F., Bouhours D. Hydroxylation of CMP-NeuAc controls the expression of N-glycolylneuraminic acid in GM3 ganglioside of the small intestine of inbred rats. J Biol Chem. 1989 Oct 15;264(29):16992–16999. [PubMed] [Google Scholar]
  5. Cox E., Houvenaghel A. Comparison of the in vitro adhesion of K88, K99, F41 and P987 positive Escherichia coli to intestinal villi of 4- to 5-week-old pigs. Vet Microbiol. 1993 Jan;34(1):7–18. doi: 10.1016/0378-1135(93)90003-p. [DOI] [PubMed] [Google Scholar]
  6. Dai Dingwei, Nanthakumar N. Nanda, Savidge Tor C., Newburg David S., Walker W. Allan. Region-specific ontogeny of alpha-2,6-sialyltransferase during normal and cortisone-induced maturation in mouse intestine. Am J Physiol Gastrointest Liver Physiol. 2002 Mar;282(3):G480–G490. doi: 10.1152/ajpgi.00531.2000. [DOI] [PubMed] [Google Scholar]
  7. Freitas Miguel, Axelsson Lars-Göran, Cayuela Chantal, Midtvedt Tore, Trugnan Germain. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol. 2002 Jun 27;118(2):149–161. doi: 10.1007/s00418-002-0432-0. [DOI] [PubMed] [Google Scholar]
  8. Gal B., Ruano M. J., Puente R., García-Pardo L. A., Rueda R., Gil A., Hueso P. Developmental changes in UDP-N-acetylglucosamine 2-epimerase activity of rat and guinea-pig liver. Comp Biochem Physiol B Biochem Mol Biol. 1997 Sep;118(1):13–15. doi: 10.1016/s0305-0491(97)00016-3. [DOI] [PubMed] [Google Scholar]
  9. Gelberg H. B. Studies on the age resistance of swine to group A rotavirus infection. Vet Pathol. 1992 Mar;29(2):161–168. doi: 10.1177/030098589202900209. [DOI] [PubMed] [Google Scholar]
  10. Isobe T., Naiki M., Handa S., Taki T. A simple assay method for bacterial binding to glycosphingolipids on a polyvinylidene difluoride membrane after thin-layer chromatography blotting and in situ mass spectrometric analysis of the ligands. Anal Biochem. 1996 Apr 5;236(1):35–40. doi: 10.1006/abio.1996.0128. [DOI] [PubMed] [Google Scholar]
  11. Karlsson N. G., Olson F. J., Jovall P. A., Andersch Y., Enerbäck L., Hansson G. C. Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochem J. 2000 Sep 15;350(Pt 3):805–814. [PMC free article] [PubMed] [Google Scholar]
  12. Kawano T., Koyama S., Takematsu H., Kozutsumi Y., Kawasaki H., Kawashima S., Kawasaki T., Suzuki A. Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem. 1995 Jul 7;270(27):16458–16463. doi: 10.1074/jbc.270.27.16458. [DOI] [PubMed] [Google Scholar]
  13. Kelm S., Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol. 1997;175:137–240. doi: 10.1016/S0074-7696(08)62127-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. King T. P., Begbie R., Slater D., McFadyen M., Thom A., Kelly D. Sialylation of intestinal microvillar membranes in newborn, sucking and weaned pigs. Glycobiology. 1995 Jul;5(5):525–534. doi: 10.1093/glycob/5.5.525. [DOI] [PubMed] [Google Scholar]
  15. Koyama S., Yamaji T., Takematsu H., Kawano T., Kozutsumi Y., Suzuki A., Kawasaki T. A naturally occurring 46-amino acid deletion of cytidine monophospho-N-acetylneuraminic acid hydroxylase leads to a change in the intracellular distribution of the protein. Glycoconj J. 1996 Jun;13(3):353–358. doi: 10.1007/BF00731467. [DOI] [PubMed] [Google Scholar]
  16. Kozutsumi Y., Kawano T., Kawasaki H., Suzuki K., Yamakawa T., Suzuki A. Reconstitution of CMP-N-acetylneuraminic acid hydroxylation activity using a mouse liver cytosol fraction and soluble cytochrome b5 purified from horse erythrocytes. J Biochem. 1991 Sep;110(3):429–435. doi: 10.1093/oxfordjournals.jbchem.a123598. [DOI] [PubMed] [Google Scholar]
  17. Kyogashima M., Ginsburg V., Krivan H. C. Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine. Arch Biochem Biophys. 1989 Apr;270(1):391–397. doi: 10.1016/0003-9861(89)90042-8. [DOI] [PubMed] [Google Scholar]
  18. Larson G., Midtvedt T. Glycosphingolipids in feces of germ-free rats as a source for studies of developmental changes of intestinal epithelial cell surface carbohydrates. Glycoconj J. 1989;6(3):285–292. doi: 10.1007/BF01047848. [DOI] [PubMed] [Google Scholar]
  19. Lepers A., Shaw L., Schneckenburger P., Cacan R., Verbert A., Schauer R. A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver. Eur J Biochem. 1990 Nov 13;193(3):715–723. doi: 10.1111/j.1432-1033.1990.tb19391.x. [DOI] [PubMed] [Google Scholar]
  20. Lill R., Kispal G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci. 2000 Aug;25(8):352–356. doi: 10.1016/s0968-0004(00)01589-9. [DOI] [PubMed] [Google Scholar]
  21. Lindahl M., Carlstedt I. Binding of K99 fimbriae of enterotoxigenic Escherichia coli to pig small intestinal mucin glycopeptides. J Gen Microbiol. 1990 Aug;136(8):1609–1614. doi: 10.1099/00221287-136-8-1609. [DOI] [PubMed] [Google Scholar]
  22. Mack D. R., Michail S., Wei S., McDougall L., Hollingsworth M. A. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol. 1999 Apr;276(4 Pt 1):G941–G950. doi: 10.1152/ajpgi.1999.276.4.G941. [DOI] [PubMed] [Google Scholar]
  23. Malykh Y. N., Krisch B., Shaw L., Warner T. G., Sinicropi D., Smith R., Chang J., Schauer R. Distribution and localization of CMP-N-acetylneuraminic acid hydroxylase and N-glycolylneuraminic acid-containing glycoconjugates in porcine lymph node and peripheral blood lymphocytes. Eur J Cell Biol. 2001 Jan;80(1):48–58. doi: 10.1078/0171-9335-00139. [DOI] [PubMed] [Google Scholar]
  24. Malykh Y. N., Shaw L., Schauer R. The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues. Glycoconj J. 1998 Sep;15(9):885–893. doi: 10.1023/a:1006959016011. [DOI] [PubMed] [Google Scholar]
  25. Martensen I., Schauer R., Shaw L. Cloning and expression of a membrane-bound CMP-N-acetylneuraminic acid hydroxylase from the starfish Asterias rubens. Eur J Biochem. 2001 Oct;268(19):5157–5166. doi: 10.1046/j.0014-2956.2001.02446.x. [DOI] [PubMed] [Google Scholar]
  26. Moon H. W., Nagy B., Isaacson R. E., Orskov I. Occurrence of K99 antigen on Escherichia coli isolated from pigs and colonization of pig ileum by K99+ enterotoxigenic E. coli from calves and pigs. Infect Immun. 1977 Feb;15(2):614–620. doi: 10.1128/iai.15.2.614-620.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morimoto N., Nakano M., Kinoshita M., Kawabata A., Morita M., Oda Y., Kuroda R., Kakehi K. Specific distribution of sialic acids in animal tissues as examined by LC-ESI-MS after derivatization with 1,2-diamino-4,5-methylenedioxybenzene. Anal Chem. 2001 Nov 15;73(22):5422–5428. doi: 10.1021/ac0104328. [DOI] [PubMed] [Google Scholar]
  28. Muchmore E. A. Developmental sialic acid modifications in rat organs. Glycobiology. 1992 Aug;2(4):337–343. doi: 10.1093/glycob/2.4.337. [DOI] [PubMed] [Google Scholar]
  29. Puissant C., Houdebine L. M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990 Feb;8(2):148–149. [PubMed] [Google Scholar]
  30. Pörtner A., Peter-Katalinić J., Brade H., Unland F., Büntemeyer H., Müthing J. Structural characterization of gangliosides from resting and endotoxin-stimulated murine B lymphocytes. Biochemistry. 1993 Nov 30;32(47):12685–12693. doi: 10.1021/bi00210a018. [DOI] [PubMed] [Google Scholar]
  31. Revilla-Nuin B., Reglero A., Feo J. C., Rodriguez-Aparicio L. B., Ferrero M. A. Identification, expression and tissue distribution of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase activity in the rat. Glycoconj J. 1998 Mar;15(3):233–241. doi: 10.1023/a:1006940927639. [DOI] [PubMed] [Google Scholar]
  32. Rolsma M. D., Kuhlenschmidt T. B., Gelberg H. B., Kuhlenschmidt M. S. Structure and function of a ganglioside receptor for porcine rotavirus. J Virol. 1998 Nov;72(11):9079–9091. doi: 10.1128/jvi.72.11.9079-9091.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schauer R., Stoll S., Reuter G. Differences in the amount of N-acetyl- and N-glycoloyl-neuraminic acid, as well as O-acylated sialic acids, of fetal and adult bovine tissues. Carbohydr Res. 1991 Jun 25;213:353–359. doi: 10.1016/s0008-6215(00)90623-2. [DOI] [PubMed] [Google Scholar]
  34. Schlenzka W., Shaw L., Kelm S., Schmidt C. L., Bill E., Trautwein A. X., Lottspeich F., Schauer R. CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya. FEBS Lett. 1996 May 6;385(3):197–200. doi: 10.1016/0014-5793(96)00384-5. [DOI] [PubMed] [Google Scholar]
  35. Schultze B., Krempl C., Ballesteros M. L., Shaw L., Schauer R., Enjuanes L., Herrler G. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol. 1996 Aug;70(8):5634–5637. doi: 10.1128/jvi.70.8.5634-5637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shaw L., Schneckenburger P., Schlenzka W., Carlsen J., Christiansen K., Jürgensen D., Schauer R. CMP-N-acetylneuraminic acid hydroxylase from mouse liver and pig submandibular glands. Interaction with membrane-bound and soluble cytochrome b5-dependent electron transport chains. Eur J Biochem. 1994 Feb 1;219(3):1001–1011. doi: 10.1111/j.1432-1033.1994.tb18583.x. [DOI] [PubMed] [Google Scholar]
  37. Taatjes D. J., Roth J. Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development: demonstration with lectin-gold techniques. Eur J Cell Biol. 1990 Dec;53(2):255–266. [PubMed] [Google Scholar]
  38. Teneberg S., Willemsen P., de Graaf F. K., Karlsson K. A. Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with Escherichia coli K99. FEBS Lett. 1990 Apr 9;263(1):10–14. doi: 10.1016/0014-5793(90)80693-d. [DOI] [PubMed] [Google Scholar]
  39. Torres-Medina A., Underdahl N. R. Scanning electron microscopy of intestine of gnotobiotic piglets infected with porcine rotavirus. Can J Comp Med. 1980 Oct;44(4):403–411. [PMC free article] [PubMed] [Google Scholar]
  40. Vallejo V., Reyes-Leyva J., Hernández J., Ramírez H., Delannoy P., Zenteno E. Differential expression of sialic acid on porcine organs during the maturation process. Comp Biochem Physiol B Biochem Mol Biol. 2000 Jul;126(3):415–424. doi: 10.1016/S0305-0491(00)00213-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Varki A. Diversity in the sialic acids. Glycobiology. 1992 Feb;2(1):25–40. doi: 10.1093/glycob/2.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson R. A., Francis D. H. Fimbriae and enterotoxins associated with Escherichia coli serogroups isolated from pigs with colibacillosis. Am J Vet Res. 1986 Feb;47(2):213–217. [PubMed] [Google Scholar]
  43. Woods R. D., Cheville N. F., Gallagher J. E. Lesions in the small intestine of newborn pigs inoculated with porcine, feline, and canine coronaviruses. Am J Vet Res. 1981 Jul;42(7):1163–1169. [PubMed] [Google Scholar]
  44. Yuyama Y., Yoshimatsu K., Ono E., Saito M., Naiki M. Postnatal change of pig intestinal ganglioside bound by Escherichia coli with K99 fimbriae. J Biochem. 1993 Apr;113(4):488–492. doi: 10.1093/oxfordjournals.jbchem.a124071. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES