Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):567–578. doi: 10.1042/BJ20021495

Effect of mutation of two critical glutamic acid residues on the activity and stability of human carboxypeptidase M and characterization of its signal for glycosylphosphatidylinositol anchoring.

Fulong Tan 1, Scott Balsitis 1, Judy K Black 1, Andrea Blöchl 1, Ji-Fang Mao 1, Robert P Becker 1, David Schacht 1, Randal A Skidgel 1
PMCID: PMC1223199  PMID: 12457462

Abstract

Human carboxypeptidase (CP) M was expressed in baculovirus-infected insect cells in a glycosylphosphatidylinositol-anchored form, whereas a truncated form, lacking the putative signal sequence for glycosylphosphatidylinositol anchoring, was secreted at high levels into the medium. Both forms had lower molecular masses (50 kDa) than native placental CPM (62 kDa), indicating minimal glycosylation. The predicted glycosylphosphatidylinositol-anchor attachment site was investigated by mutation of Ser(406) to Ala, Thr or Pro and expression in HEK-293 and COS-7 cells. The wild-type and S406A and S406T mutants were expressed on the plasma membrane in glycosylphosphatidylinositol-anchored form, but the S406P mutant was not and was retained in a perinuclear location. The roles of Glu(260) and Glu(264) in CPM were investigated by site-directed mutagenesis. Mutation of Glu(260) to Gln had minimal effects on kinetic parameters, but decreased heat stability, whereas mutation to Ala reduced the k(cat)/ K(m) by 104-fold and further decreased stability. In contrast, mutation of Glu(264) to Gln resulted in a 10000-fold decrease in activity, but the enzyme still bound to p-aminobenzoylarginine-Sepharose and was resistant to trypsin treatment, indicating that the protein was folded properly. These results show that Glu(264) is the critical catalytic glutamic acid and that Glu(260) probably stabilizes the conformation of the active site.

Full Text

The Full Text of this article is available as a PDF (440.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloy P., Companys V., Vendrell J., Aviles F. X., Fricker L. D., Coll M., Gomis-Rüth F. X. The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases. J Biol Chem. 2001 Feb 14;276(19):16177–16184. doi: 10.1074/jbc.M011457200. [DOI] [PubMed] [Google Scholar]
  2. Altmann F., Staudacher E., Wilson I. B., März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J. 1999 Feb;16(2):109–123. doi: 10.1023/a:1026488408951. [DOI] [PubMed] [Google Scholar]
  3. Berger J., Howard A. D., Brink L., Gerber L., Hauber J., Cullen B. R., Udenfriend S. COOH-terminal requirements for the correct processing of a phosphatidylinositol-glycan anchored membrane protein. J Biol Chem. 1988 Jul 15;263(20):10016–10021. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bucht G., Wikström P., Hjalmarsson K. Optimising the signal peptide for glycosyl phosphatidylinositol modification of human acetylcholinesterase using mutational analysis and peptide-quantitative structure-activity relationships. Biochim Biophys Acta. 1999 May 18;1431(2):471–482. doi: 10.1016/s0167-4838(99)00079-5. [DOI] [PubMed] [Google Scholar]
  6. Cha J., Auld D. S. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Biochemistry. 1997 Dec 16;36(50):16019–16024. doi: 10.1021/bi972223g. [DOI] [PubMed] [Google Scholar]
  7. Coussen F., Ayon A., Le Goff A., Leroy J., Massoulié J., Bon S. Addition of a glycophosphatidylinositol to acetylcholinesterase. Processing, degradation, and secretion. J Biol Chem. 2001 May 3;276(30):27881–27892. doi: 10.1074/jbc.M010817200. [DOI] [PubMed] [Google Scholar]
  8. Deddish P. A., Skidgel R. A., Erdös E. G. Enhanced Co2+ activation and inhibitor binding of carboxypeptidase M at low pH. Similarity to carboxypeptidase H (enkephalin convertase). Biochem J. 1989 Jul 1;261(1):289–291. doi: 10.1042/bj2610289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deddish P. A., Skidgel R. A., Kriho V. B., Li X. Y., Becker R. P., Erdös E. G. Carboxypeptidase M in Madin-Darby canine kidney cells. Evidence that carboxypeptidase M has a phosphatidylinositol glycan anchor. J Biol Chem. 1990 Sep 5;265(25):15083–15089. [PubMed] [Google Scholar]
  10. Delahunty M. D., Stafford F. J., Yuan L. C., Shaz D., Bonifacino J. S. Uncleaved signals for glycosylphosphatidylinositol anchoring cause retention of precursor proteins in the endoplasmic reticulum. J Biol Chem. 1993 Jun 5;268(16):12017–12027. [PubMed] [Google Scholar]
  11. Eng F. J., Novikova E. G., Kuroki K., Ganem D., Fricker L. D. gp180, a protein that binds duck hepatitis B virus particles, has metallocarboxypeptidase D-like enzymatic activity. J Biol Chem. 1998 Apr 3;273(14):8382–8388. doi: 10.1074/jbc.273.14.8382. [DOI] [PubMed] [Google Scholar]
  12. Espinoza B., Silman I., Arnon R., Tarrab-Hazdai R. Phosphatidylinositol-specific phospholipase C induces biosynthesis of acetylcholinesterase via diacylglycerol in Schistosoma mansoni. Eur J Biochem. 1991 Feb 14;195(3):863–870. doi: 10.1111/j.1432-1033.1991.tb15776.x. [DOI] [PubMed] [Google Scholar]
  13. Fricker L. D., Evans C. J., Esch F. S., Herbert E. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature. 1986 Oct 2;323(6087):461–464. doi: 10.1038/323461a0. [DOI] [PubMed] [Google Scholar]
  14. Gerber L. D., Kodukula K., Udenfriend S. Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem. 1992 Jun 15;267(17):12168–12173. [PubMed] [Google Scholar]
  15. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  16. Gomis-Rüth F. X., Companys V., Qian Y., Fricker L. D., Vendrell J., Avilés F. X., Coll M. Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily. EMBO J. 1999 Nov 1;18(21):5817–5826. doi: 10.1093/emboj/18.21.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. He G. P., Muise A., Li A. W., Ro H. S. A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature. 1995 Nov 2;378(6552):92–96. doi: 10.1038/378092a0. [DOI] [PubMed] [Google Scholar]
  18. Layne M. D., Endege W. O., Jain M. K., Yet S. F., Hsieh C. M., Chin M. T., Perrella M. A., Blanar M. A., Haber E., Lee M. E. Aortic carboxypeptidase-like protein, a novel protein with discoidin and carboxypeptidase-like domains, is up-regulated during vascular smooth muscle cell differentiation. J Biol Chem. 1998 Jun 19;273(25):15654–15660. doi: 10.1074/jbc.273.25.15654. [DOI] [PubMed] [Google Scholar]
  19. Li Jingqiu, Rehli Michael, Timblin Barbara, Tan Fulong, Krause Stefan W., Skidgel Randal A. Structure of the human carboxypeptidase M gene. Identification of a proximal GC-rich promoter and a unique distal promoter that consists of repetitive elements. Gene. 2002 Feb 6;284(1-2):189–202. doi: 10.1016/s0378-1119(01)00898-8. [DOI] [PubMed] [Google Scholar]
  20. Li X. Y., Skidgel R. A. Release of glycosylphosphatidylinositol-anchored carboxypeptidase M by phosphatidylinositol-specific phospholipase C upregulates enzyme synthesis. Biochem Biophys Res Commun. 1999 Apr 29;258(1):204–210. doi: 10.1006/bbrc.1999.0619. [DOI] [PubMed] [Google Scholar]
  21. Low M. G. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J. 1987 May 15;244(1):1–13. doi: 10.1042/bj2440001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Makinen M. W., Wells G. B., Kang S. O. Structure and mechanism of carboxypeptidase A. Adv Inorg Biochem. 1984;6:1–69. [PubMed] [Google Scholar]
  23. Marcic B., Deddish P. A., Skidgel R. A., Erdös E. G., Minshall R. D., Tan F. Replacement of the transmembrane anchor in angiotensin I-converting enzyme (ACE) with a glycosylphosphatidylinositol tail affects activation of the B2 bradykinin receptor by ACE inhibitors. J Biol Chem. 2000 May 26;275(21):16110–16118. doi: 10.1074/jbc.M909490199. [DOI] [PubMed] [Google Scholar]
  24. Micanovic R., Gerber L. D., Berger J., Kodukula K., Udenfriend S. Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1990 Jan;87(1):157–161. doi: 10.1073/pnas.87.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moran P., Caras I. W. Proteins containing an uncleaved signal for glycophosphatidylinositol membrane anchor attachment are retained in a post-ER compartment. J Cell Biol. 1992 Nov;119(4):763–772. doi: 10.1083/jcb.119.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moran P., Raab H., Kohr W. J., Caras I. W. Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site. J Biol Chem. 1991 Jan 15;266(2):1250–1257. [PubMed] [Google Scholar]
  27. Muise A. M., Ro H. S. Enzymic characterization of a novel member of the regulatory B-like carboxypeptidase with transcriptional repression function: stimulation of enzymic activity by its target DNA. Biochem J. 1999 Oct 15;343(Pt 2):341–345. [PMC free article] [PubMed] [Google Scholar]
  28. Mustafi D., Makinen M. W. Catalytic conformation of carboxypeptidase A. Structure of a true enzyme reaction intermediate determined by electron nuclear double resonance. J Biol Chem. 1994 Feb 11;269(6):4587–4595. [PubMed] [Google Scholar]
  29. Nagae A., Deddish P. A., Becker R. P., Anderson C. H., Abe M., Tan F., Skidgel R. A., Erdös E. G. Carboxypeptidase M in brain and peripheral nerves. J Neurochem. 1992 Dec;59(6):2201–2212. doi: 10.1111/j.1471-4159.1992.tb10112.x. [DOI] [PubMed] [Google Scholar]
  30. Okuyama T., Waheed A., Kusumoto W., Zhu X. L., Sly W. S. Carbonic anhydrase IV: role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity. Arch Biochem Biophys. 1995 Jul 10;320(2):315–322. doi: 10.1016/0003-9861(95)90015-2. [DOI] [PubMed] [Google Scholar]
  31. Pierce J., Suelter C. H. An evaluation of the Coomassie brillant blue G-250 dye-binding method for quantitative protein determination. Anal Biochem. 1977 Aug;81(2):478–480. doi: 10.1016/0003-2697(77)90723-0. [DOI] [PubMed] [Google Scholar]
  32. Plummer T. H., Jr, Hurwitz M. Y. Human plasma carboxypeptidase N. Isolation and characterization. J Biol Chem. 1978 Jun 10;253(11):3907–3912. [PubMed] [Google Scholar]
  33. Qian Y., Varlamov O., Fricker L. D. Glu300 of rat carboxypeptidase E is essential for enzymatic activity but not substrate binding or routing to the regulated secretory pathway. J Biol Chem. 1999 Apr 23;274(17):11582–11586. doi: 10.1074/jbc.274.17.11582. [DOI] [PubMed] [Google Scholar]
  34. Reznik S. E., Fricker L. D. Carboxypeptidases from A to z: implications in embryonic development and Wnt binding. Cell Mol Life Sci. 2001 Nov;58(12-13):1790–1804. doi: 10.1007/PL00000819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scallon B. J., Fung W. J., Tsang T. C., Li S., Kado-Fong H., Huang K. S., Kochan J. P. Primary structure and functional activity of a phosphatidylinositol-glycan-specific phospholipase D. Science. 1991 Apr 19;252(5004):446–448. doi: 10.1126/science.2017684. [DOI] [PubMed] [Google Scholar]
  36. Skidgel R. A. Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol Sci. 1988 Aug;9(8):299–304. doi: 10.1016/0165-6147(88)90015-6. [DOI] [PubMed] [Google Scholar]
  37. Skidgel R. A., Davis R. M., Tan F. Human carboxypeptidase M. Purification and characterization of a membrane-bound carboxypeptidase that cleaves peptide hormones. J Biol Chem. 1989 Feb 5;264(4):2236–2241. [PubMed] [Google Scholar]
  38. Skidgel R. A., Erdös E. G. Cellular carboxypeptidases. Immunol Rev. 1998 Feb;161:129–141. doi: 10.1111/j.1600-065x.1998.tb01577.x. [DOI] [PubMed] [Google Scholar]
  39. Skidgel R. A. Human carboxypeptidase N: lysine carboxypeptidase. Methods Enzymol. 1995;248:653–663. doi: 10.1016/0076-6879(95)48042-0. [DOI] [PubMed] [Google Scholar]
  40. Skidgel R. A., Johnson A. R., Erdös E. G. Hydrolysis of opioid hexapeptides by carboxypeptidase N. Presence of carboxypeptidase in cell membranes. Biochem Pharmacol. 1984 Nov 1;33(21):3471–3478. doi: 10.1016/0006-2952(84)90122-9. [DOI] [PubMed] [Google Scholar]
  41. Skidgel R. A., Tan F. L., Deddish P. A., Li X. Y. Structure, function and membrane anchoring of carboxypeptidase M. Biomed Biochim Acta. 1991;50(4-6):815–820. [PubMed] [Google Scholar]
  42. Song L., Fricker L. D. Cloning and expression of human carboxypeptidase Z, a novel metallocarboxypeptidase. J Biol Chem. 1997 Apr 18;272(16):10543–10550. doi: 10.1074/jbc.272.16.10543. [DOI] [PubMed] [Google Scholar]
  43. Spangenberg H. C., Lee H. B., Li J., Tan F., Skidgel R., Wands J. R., Tong S. A short sequence within domain C of duck carboxypeptidase D is critical for duck hepatitis B virus binding and determines host specificity. J Virol. 2001 Nov;75(22):10630–10642. doi: 10.1128/JVI.75.22.10630-10642.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tan F., Chan S. J., Steiner D. F., Schilling J. W., Skidgel R. A. Molecular cloning and sequencing of the cDNA for human membrane-bound carboxypeptidase M. Comparison with carboxypeptidases A, B, H, and N. J Biol Chem. 1989 Aug 5;264(22):13165–13170. [PubMed] [Google Scholar]
  45. Tan F., Deddish P. A., Skidgel R. A. Human carboxypeptidase M. Methods Enzymol. 1995;248:663–675. doi: 10.1016/0076-6879(95)48043-9. [DOI] [PubMed] [Google Scholar]
  46. Tan F., Rehli M., Krause S. W., Skidgel R. A. Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains. Biochem J. 1997 Oct 1;327(Pt 1):81–87. doi: 10.1042/bj3270081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tessier D. C., Thomas D. Y., Khouri H. E., Laliberté F., Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene. 1991 Feb 15;98(2):177–183. doi: 10.1016/0378-1119(91)90171-7. [DOI] [PubMed] [Google Scholar]
  48. Theveniau M., Guo X. J., Rage P., Rougon G. Removal of C6 astrocytoma cell surface molecules with phosphatidylinositol phospholipase C: effect on regulation of neural cell adhesion molecule isoforms. J Neurochem. 1991 Jul;57(1):67–74. doi: 10.1111/j.1471-4159.1991.tb02100.x. [DOI] [PubMed] [Google Scholar]
  49. Udenfriend S., Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem. 1995;64:563–591. doi: 10.1146/annurev.bi.64.070195.003023. [DOI] [PubMed] [Google Scholar]
  50. Vallee B. L., Auld D. S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):220–224. doi: 10.1073/pnas.87.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wei Suwen, Segura Sonia, Vendrell Josep, Aviles Francesc X., Lanoue Edith, Day Robert, Feng Yun, Fricker Lloyd D. Identification and characterization of three members of the human metallocarboxypeptidase gene family. J Biol Chem. 2002 Feb 8;277(17):14954–14964. doi: 10.1074/jbc.M112254200. [DOI] [PubMed] [Google Scholar]
  52. Xin X., Day R., Dong W., Lei Y., Fricker L. D. Identification of mouse CPX-2, a novel member of the metallocarboxypeptidase gene family: cDNA cloning, mRNA distribution, and protein expression and characterization. DNA Cell Biol. 1998 Oct;17(10):897–909. doi: 10.1089/dna.1998.17.897. [DOI] [PubMed] [Google Scholar]
  53. Xin X., Varlamov O., Day R., Dong W., Bridgett M. M., Leiter E. H., Fricker L. D. Cloning and sequence analysis of cDNA encoding rat carboxypeptidase D. DNA Cell Biol. 1997 Jul;16(7):897–909. doi: 10.1089/dna.1997.16.897. [DOI] [PubMed] [Google Scholar]
  54. van Kley H., Hale S. M. Assay for protein by dye binding. Anal Biochem. 1977 Aug;81(2):485–487. doi: 10.1016/0003-2697(77)90725-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES