Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):695–702. doi: 10.1042/BJ20021671

Evidence that Ca2+-release-activated Ca2+ channels in rat hepatocytes are required for the maintenance of hormone-induced Ca2+ oscillations.

Roland B Gregory 1, Gregory J Barritt 1
PMCID: PMC1223201  PMID: 12460123

Abstract

Store-operated Ca(2+) channels in liver cells have been shown previously to exhibit a high selectivity for Ca(2+) and to have properties indistinguishable from those of Ca(2+)-release-activated Ca(2+) (CRAC) channels in mast cells and lymphocytes [Rychkov, Brereton, Harland and Barritt (2001) Hepatology 33, 938-947]. The role of CRAC channels in the maintenance of hormone-induced oscillations in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) in isolated rat hepatocytes was investigated using several inhibitors of CRAC channels. 2-Aminoethyl diphenylborate (2-APB; 75 microM), Gd(3+) (1 microM) and 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SK&F 96365; 50 microM) each inhibited vasopressin- and adrenaline (epinephrine)-induced Ca(2+) oscillations (measured using fura-2). The characteristics of this inhibition were similar to those of inhibition caused by decreasing the extracellular Ca(2+) concentration to zero by addition of EGTA. The effect of 2-APB was reversible. In contrast, LOE-908 [( R, S )-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl- N, N -di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamide mesylate] (30 microM), used commonly to block Ca(2+) inflow through intracellular-messenger-activated, non-selective cation channels, did not inhibit the Ca(2+) oscillations. In the absence of added extracellular Ca(2+), 2-APB, Gd(3+) and SK&F 96365 did not alter the kinetics of the increase in [Ca(2+)](cyt) induced by a concentration of adrenaline or vasopressin that induces continuous Ca(2+) oscillations at the physiological extracellular Ca(2+) concentration. Ca(2+) inflow through non-selective cation channels activated by maitotoxin could not restore Ca(2+) oscillations in cells treated with 2-APB to block Ca(2+) inflow through CRAC channels. Evidence for the specificity of the pharmacological agents for inhibition of CRAC channels under the conditions of the present experiments with hepatocytes is discussed. It is concluded that Ca(2+) inflow through CRAC channels is required for the maintenance of hormone-induced Ca(2+) oscillations in isolated hepatocytes.

Full Text

The Full Text of this article is available as a PDF (177.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher-Landsberg J., Saunders T., Elovitz M., Phillippe M. The effects of 2-aminoethoxydiphenyl borate, a novel inositol 1,4, 5-trisphosphate receptor modulator on myometrial contractions. Biochem Biophys Res Commun. 1999 Nov 2;264(3):979–982. doi: 10.1006/bbrc.1999.1602. [DOI] [PubMed] [Google Scholar]
  2. Auld A., Chen J., Brereton H. M., Wang Y. J., Gregory R. B., Barritt G. J. Store-operated Ca(2+) inflow in Reuber hepatoma cells is inhibited by voltage-operated Ca(2+) channel antagonists and, in contrast to freshly isolated hepatocytes, does not require a pertussis toxin-sensitive trimeric GTP-binding protein. Biochim Biophys Acta. 2000 Jun 2;1497(1):11–26. doi: 10.1016/s0167-4889(00)00045-8. [DOI] [PubMed] [Google Scholar]
  3. Bakowski D., Glitsch M. D., Parekh A. B. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J Physiol. 2001 Apr 1;532(Pt 1):55–71. doi: 10.1111/j.1469-7793.2001.0055g.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilmen Jonathan G., Michelangeli Francesco. Inhibition of the type 1 inositol 1,4,5-trisphosphate receptor by 2-aminoethoxydiphenylborate. Cell Signal. 2002 Nov;14(11):955–960. doi: 10.1016/s0898-6568(02)00042-6. [DOI] [PubMed] [Google Scholar]
  5. Bootman Martin D., Collins Tony J., Mackenzie Lauren, Roderick H. Llewelyn, Berridge Michael J., Peppiatt Claire M. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J. 2002 Aug;16(10):1145–1150. doi: 10.1096/fj.02-0037rev. [DOI] [PubMed] [Google Scholar]
  6. Braun F. J., Broad L. M., Armstrong D. L., Putney J. W., Jr Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions. J Biol Chem. 2001 Jan 12;276(2):1063–1070. doi: 10.1074/jbc.M008348200. [DOI] [PubMed] [Google Scholar]
  7. Brereton H. M., Chen J., Rychkov G., Harland M. L., Barritt G. J. Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta. 2001 Aug 22;1540(2):107–126. doi: 10.1016/s0167-4889(01)00124-0. [DOI] [PubMed] [Google Scholar]
  8. Broad L. M., Braun F. J., Lievremont J. P., Bird G. S., Kurosaki T., Putney J. W., Jr Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem. 2001 Feb 13;276(19):15945–15952. doi: 10.1074/jbc.M011571200. [DOI] [PubMed] [Google Scholar]
  9. Broad L. M., Cannon T. R., Taylor C. W. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol. 1999 May 15;517(Pt 1):121–134. doi: 10.1111/j.1469-7793.1999.0121z.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dobrydneva Y., Blackmore P. 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol. 2001 Sep;60(3):541–552. [PubMed] [Google Scholar]
  11. Docherty R. J. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108-15) cells. J Physiol. 1988 Apr;398:33–47. doi: 10.1113/jphysiol.1988.sp017027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dolmetsch R. E., Lewis R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J Gen Physiol. 1994 Mar;103(3):365–388. doi: 10.1085/jgp.103.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dyachok O., Gylfe E. Store-operated influx of Ca(2+) in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci. 2001 Jun;114(Pt 11):2179–2186. doi: 10.1242/jcs.114.11.2179. [DOI] [PubMed] [Google Scholar]
  14. Fernando K. C., Barritt G. J. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions. Biochim Biophys Acta. 1995 Jul 20;1268(1):97–106. doi: 10.1016/0167-4889(95)00041-p. [DOI] [PubMed] [Google Scholar]
  15. Gregory R. B., Rychkov G., Barritt G. J. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J. 2001 Mar 1;354(Pt 2):285–290. doi: 10.1042/0264-6021:3540285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gutierrez D., Díaz de León L., Vaca L. Characterization of the maitotoxin-induced calcium influx pathway from human skin fibroblasts. Cell Calcium. 1997 Jul;22(1):31–38. doi: 10.1016/s0143-4160(97)90087-7. [DOI] [PubMed] [Google Scholar]
  17. Gysembergh A., Lemaire S., Piot C., Sportouch C., Richard S., Kloner R. A., Przyklenk K. Pharmacological manipulation of Ins(1,4,5)P3 signaling mimics preconditioning in rabbit heart. Am J Physiol. 1999 Dec;277(6 Pt 2):H2458–H2469. doi: 10.1152/ajpheart.1999.277.6.H2458. [DOI] [PubMed] [Google Scholar]
  18. Hamada T., Liou S. Y., Fukushima T., Maruyama T., Watanabe S., Mikoshiba K., Ishida N. The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neurosci Lett. 1999 Mar 26;263(2-3):125–128. doi: 10.1016/s0304-3940(99)00111-1. [DOI] [PubMed] [Google Scholar]
  19. Hermosura Meredith C., Monteilh-Zoller Mahealani K., Scharenberg Andrew M., Penner Reinhold, Fleig Andrea. Dissociation of the store-operated calcium current I(CRAC) and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol. 2002 Mar 1;539(Pt 2):445–458. doi: 10.1113/jphysiol.2001.013361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  21. Iwasaki H., Mori Y., Hara Y., Uchida K., Zhou H., Mikoshiba K. 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels. 2001;7(6):429–439. [PubMed] [Google Scholar]
  22. Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kawanabe Y., Okamoto Y., Hashimoto N., Masaki T. Characterization of Ca(2+) channels involved in endothelin-1-induced mitogenic responses in vascular smooth muscle cells. Eur J Pharmacol. 2001 Jun 22;422(1-3):15–21. doi: 10.1016/s0014-2999(01)01052-4. [DOI] [PubMed] [Google Scholar]
  24. Krautwurst D., Hescheler J., Arndts D., Lösel W., Hammer R., Schultz G. Novel potent inhibitor of receptor-activated nonselective cation currents in HL-60 cells. Mol Pharmacol. 1993 May;43(5):655–659. [PubMed] [Google Scholar]
  25. Kukkonen J. P., Lund P. E., Akerman K. E. 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca(2+) discharge and store-operated Ca(2+) influx. Cell Calcium. 2001 Aug;30(2):117–129. doi: 10.1054/ceca.2001.0219. [DOI] [PubMed] [Google Scholar]
  26. Lidofsky S. D., Xie M. H., Sostman A., Scharschmidt B. F., Fitz J. G. Vasopressin increases cytosolic sodium concentration in hepatocytes and activates calcium influx through cation-selective channels. J Biol Chem. 1993 Jul 15;268(20):14632–14636. [PubMed] [Google Scholar]
  27. Llopis J., Kass G. E., Gahm A., Orrenius S. Evidence for two pathways of receptor-mediated Ca2+ entry in hepatocytes. Biochem J. 1992 May 15;284(Pt 1):243–247. doi: 10.1042/bj2840243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Luo D., Broad L. M., Bird G. S., Putney J. W., Jr Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem. 2000 Nov 28;276(8):5613–5621. doi: 10.1074/jbc.M007524200. [DOI] [PubMed] [Google Scholar]
  29. Ma H. T., Patterson R. L., van Rossum D. B., Birnbaumer L., Mikoshiba K., Gill D. L. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science. 2000 Mar 3;287(5458):1647–1651. doi: 10.1126/science.287.5458.1647. [DOI] [PubMed] [Google Scholar]
  30. Ma H. T., Venkatachalam K., Li H. S., Montell C., Kurosaki T., Patterson R. L., Gill D. L. Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem. 2001 Mar 19;276(22):18888–18896. doi: 10.1074/jbc.M100944200. [DOI] [PubMed] [Google Scholar]
  31. Maruyama T., Kanaji T., Nakade S., Kanno T., Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997 Sep;122(3):498–505. doi: 10.1093/oxfordjournals.jbchem.a021780. [DOI] [PubMed] [Google Scholar]
  32. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mignen O., Shuttleworth T. J. I(ARC), a novel arachidonate-regulated, noncapacitative Ca(2+) entry channel. J Biol Chem. 2000 Mar 31;275(13):9114–9119. doi: 10.1074/jbc.275.13.9114. [DOI] [PubMed] [Google Scholar]
  34. Missiaen L., Callewaert G., De Smedt H., Parys J. B. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001 Feb;29(2):111–116. doi: 10.1054/ceca.2000.0163. [DOI] [PubMed] [Google Scholar]
  35. Moneer Zahid, Taylor Colin W. Reciprocal regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation. Biochem J. 2002 Feb 15;362(Pt 1):13–21. doi: 10.1042/0264-6021:3620013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nathanson M. H., Burgstahler A. D. Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets: demonstration with confocal microscopy. Mol Biol Cell. 1992 Jan;3(1):113–121. doi: 10.1091/mbc.3.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Paltauf-Doburzynska J., Frieden M., Spitaler M., Graier W. F. Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol. 2000 May 1;524(Pt 3):701–713. doi: 10.1111/j.1469-7793.2000.00701.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Patel S., Robb-Gaspers L. D., Stellato K. A., Shon M., Thomas A. P. Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nat Cell Biol. 1999 Dec;1(8):467–471. doi: 10.1038/70249. [DOI] [PubMed] [Google Scholar]
  39. Peng J. B., Chen X. Z., Berger U. V., Vassilev P. M., Tsukaguchi H., Brown E. M., Hediger M. A. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999 Aug 6;274(32):22739–22746. doi: 10.1074/jbc.274.32.22739. [DOI] [PubMed] [Google Scholar]
  40. Peng J. B., Chen X. Z., Berger U. V., Weremowicz S., Morton C. C., Vassilev P. M., Brown E. M., Hediger M. A. Human calcium transport protein CaT1. Biochem Biophys Res Commun. 2000 Nov 19;278(2):326–332. doi: 10.1006/bbrc.2000.3716. [DOI] [PubMed] [Google Scholar]
  41. Pizzo P., Burgo A., Pozzan T., Fasolato C. Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem. 2001 Oct;79(1):98–109. doi: 10.1046/j.1471-4159.2001.00539.x. [DOI] [PubMed] [Google Scholar]
  42. Prakriya M., Lewis R. S. Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol. 2001 Oct 1;536(Pt 1):3–19. doi: 10.1111/j.1469-7793.2001.t01-1-00003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
  44. Robb-Gaspers L. D., Thomas A. P. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem. 1995 Apr 7;270(14):8102–8107. doi: 10.1074/jbc.270.14.8102. [DOI] [PubMed] [Google Scholar]
  45. Rooney T. A., Sass E. J., Thomas A. P. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J Biol Chem. 1989 Oct 15;264(29):17131–17141. [PubMed] [Google Scholar]
  46. Rychkov G., Brereton H. M., Harland M. L., Barritt G. J. Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology. 2001 Apr;33(4):938–947. doi: 10.1053/jhep.2001.23051. [DOI] [PubMed] [Google Scholar]
  47. Schilling W. P., Sinkins W. G., Estacion M. Maitotoxin activates a nonselective cation channel and a P2Z/P2X(7)-like cytolytic pore in human skin fibroblasts. Am J Physiol. 1999 Oct;277(4 Pt 1):C755–C765. doi: 10.1152/ajpcell.1999.277.4.C755. [DOI] [PubMed] [Google Scholar]
  48. Schindl Rainer, Kahr Heike, Graz Ingrid, Groschner Klaus, Romanin Christoph. Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca(2+) release-activated Ca(2+) channel) channels. J Biol Chem. 2002 May 14;277(30):26950–26958. doi: 10.1074/jbc.M203700200. [DOI] [PubMed] [Google Scholar]
  49. Serrière V., Berthon B., Boucherie S., Jacquemin E., Guillon G., Claret M., Tordjmann T. Vasopressin receptor distribution in the liver controls calcium wave propagation and bile flow. FASEB J. 2001 Jun;15(8):1484–1486. doi: 10.1096/fj.00-0659fje. [DOI] [PubMed] [Google Scholar]
  50. Shuttleworth T. J. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem. 1996 Sep 6;271(36):21720–21725. doi: 10.1074/jbc.271.36.21720. [DOI] [PubMed] [Google Scholar]
  51. Shuttleworth T. J., Thompson J. L. Muscarinic receptor activation of arachidonate-mediated Ca2+ entry in HEK293 cells is independent of phospholipase C. J Biol Chem. 1998 Dec 4;273(49):32636–32643. doi: 10.1074/jbc.273.49.32636. [DOI] [PubMed] [Google Scholar]
  52. Shuttleworth T. J. What drives calcium entry during [Ca2+]i oscillations?--challenging the capacitative model. Cell Calcium. 1999 Mar;25(3):237–246. doi: 10.1054/ceca.1999.0022. [DOI] [PubMed] [Google Scholar]
  53. Tepikin A. V., Voronina S. G., Gallacher D. V., Petersen O. H. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J Biol Chem. 1992 Jul 15;267(20):14073–14076. [PubMed] [Google Scholar]
  54. Thomas A. P., Renard D. C., Rooney T. A. Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium. 1991 Feb-Mar;12(2-3):111–126. doi: 10.1016/0143-4160(91)90013-5. [DOI] [PubMed] [Google Scholar]
  55. Trebak Mohamed, Bird Gary St J., McKay Richard R., Putney James W., Jr Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem. 2002 Apr 9;277(24):21617–21623. doi: 10.1074/jbc.M202549200. [DOI] [PubMed] [Google Scholar]
  56. Voets T., Prenen J., Fleig A., Vennekens R., Watanabe H., Hoenderop J. G., Bindels R. J., Droogmans G., Penner R., Nilius B. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem. 2001 Oct 30;276(51):47767–47770. doi: 10.1074/jbc.C100607200. [DOI] [PubMed] [Google Scholar]
  57. Wang Ying-Jie, Gregory Roland B., Barritt Greg J. Maintenance of the filamentous actin cytoskeleton is necessary for the activation of store-operated Ca2+ channels, but not other types of plasma-membrane Ca2+ channels, in rat hepatocytes. Biochem J. 2002 Apr 1;363(Pt 1):117–126. doi: 10.1042/0264-6021:3630117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Woods N. M., Dixon C. J., Yasumoto T., Cuthbertson K. S., Cobbold P. H. Maitotoxin-induced free Ca changes in single rat hepatocytes. Cell Signal. 1999 Nov;11(11):805–811. doi: 10.1016/s0898-6568(99)00046-7. [DOI] [PubMed] [Google Scholar]
  59. Zweifach A., Lewis R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6295–6299. doi: 10.1073/pnas.90.13.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES