Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):839–848. doi: 10.1042/BJ20021519

Interactions of the two heads of scallop (Argopecten irradians) heavy meromyosin with actin: influence of calcium and nucleotides.

Miklos Nyitrai 1, Andrew G Szent-Györgyi 1, Michael A Geeves 1
PMCID: PMC1223211  PMID: 12441001

Abstract

We recently proposed a co-operative model for the influence of calcium and ADP on scallop ( Argopecten irradians ) muscle heavy meromyosin (scHMM), in which scHMM exists in two conformations (designated 'off' and 'on'), and calcium and ADP are allosteric effectors of the equilibrium between the off and on conformations [Nyitrai, Szent-Gyorgyi and Geeves (2002) Biochem. J. 365, 19-30]. Here we examine the influence of actin on scHMM. In the absence of nucleotide, both heads of scHMM bind very tightly to actin, independent of the presence of calcium. In the absence of calcium, ADP dissociates scHMM from actin completely, and little evidence of ternary complex formation can be found (actin affinity >20 microM). The off state of scHMM therefore does not interact with actin. In the presence of calcium, ADP and actin lower each other's affinity for scHMM by 30-50-fold, although both heads remain strongly attached to actin (actin affinity 0.17 microM). Detailed analysis suggests that the second head contributes far more to the overall binding energy than is the case for mammalian skeletal muscle HMM. This is consistent with a different stereochemical relationship between the two heads in scallop and mammalian HMM molecules.

Full Text

The Full Text of this article is available as a PDF (209.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger C. E., Fagnant P. M., Heizmann S., Trybus K. M., Geeves M. A. ADP binding induces an asymmetry between the heads of unphosphorylated myosin. J Biol Chem. 2001 Apr 11;276(26):23240–23245. doi: 10.1074/jbc.M100524200. [DOI] [PubMed] [Google Scholar]
  2. Chantler P. D., Sellers J. R., Szent-Györgyi A. G. Cooperativity in scallop myosin. Biochemistry. 1981 Jan 6;20(1):210–216. doi: 10.1021/bi00504a035. [DOI] [PubMed] [Google Scholar]
  3. Conibear P. B., Geeves M. A. Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys J. 1998 Aug;75(2):926–937. doi: 10.1016/S0006-3495(98)77581-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  5. Criddle A. H., Geeves M. A., Jeffries T. The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem J. 1985 Dec 1;232(2):343–349. doi: 10.1042/bj2320343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  7. Goody R. S., Holmes K. C. Cross-bridges and the mechanism of muscle contraction. Biochim Biophys Acta. 1983 Apr 15;726(1):13–39. doi: 10.1016/0304-4173(83)90009-5. [DOI] [PubMed] [Google Scholar]
  8. Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
  9. Hill T. L. Binding of monovalent and divalent myosin fragments onto sites on actin. Nature. 1978 Aug 24;274(5673):825–826. doi: 10.1038/274825a0. [DOI] [PubMed] [Google Scholar]
  10. Hill T. L., Eisenberg E. Theoretical considerations in the equilibrium binding of myosin fragments on F-actin. Biophys Chem. 1980 Apr;11(2):271–281. doi: 10.1016/0301-4622(80)80030-5. [DOI] [PubMed] [Google Scholar]
  11. Jackson A. P., Bagshaw C. R. Kinetic trapping of intermediates of the scallop heavy meromyosin adenosine triphosphatase reaction revealed by formycin nucleotides. Biochem J. 1988 Apr 15;251(2):527–540. doi: 10.1042/bj2510527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson A. P., Bagshaw C. R. Transient-kinetic studies of the adenosine triphosphatase activity of scallop heavy meromyosin. Biochem J. 1988 Apr 15;251(2):515–526. doi: 10.1042/bj2510515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kalabokis V. N., Szent-Györgyi A. G. Cooperativity and regulation of scallop myosin and myosin fragments. Biochemistry. 1997 Dec 16;36(50):15834–15840. doi: 10.1021/bi971932r. [DOI] [PubMed] [Google Scholar]
  14. Kurzawa-Goertz S. E., Perreault-Micale C. L., Trybus K. M., Szent-Györgyi A. G., Geeves M. A. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms. Biochemistry. 1998 May 19;37(20):7517–7525. doi: 10.1021/bi972844+. [DOI] [PubMed] [Google Scholar]
  15. Kurzawa S. E., Geeves M. A. A novel stopped-flow method for measuring the affinity of actin for myosin head fragments using microgram quantities of protein. J Muscle Res Cell Motil. 1996 Dec;17(6):669–676. doi: 10.1007/BF00154061. [DOI] [PubMed] [Google Scholar]
  16. Nyitrai Miklós, Szent-Györgyi Andrew G., Geeves Michael A. A kinetic model of the co-operative binding of calcium and ADP to scallop (Argopecten irradians) heavy meromyosin. Biochem J. 2002 Jul 1;365(Pt 1):19–30. doi: 10.1042/BJ20020099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  18. Stafford W. F., Jacobsen M. P., Woodhead J., Craig R., O'Neall-Hennessey E., Szent-Györgyi A. G. Calcium-dependent structural changes in scallop heavy meromyosin. J Mol Biol. 2001 Mar 16;307(1):137–147. doi: 10.1006/jmbi.2000.4490. [DOI] [PubMed] [Google Scholar]
  19. Wells C., Bagshaw C. R. Calcium regulation of molluscan myosin ATPase in the absence of actin. Nature. 1985 Feb 21;313(6004):696–697. doi: 10.1038/313696a0. [DOI] [PubMed] [Google Scholar]
  20. Wells C., Warriner K. E., Bagshaw C. R. Fluorescence studies on the nucleotide- and Ca2+-binding domains of molluscan myosin. Biochem J. 1985 Oct 1;231(1):31–38. doi: 10.1042/bj2310031. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES