Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):793–804. doi: 10.1042/BJ20021249

Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1.

Ana Rita Marques 1, Pedro M Coutinho 1, Paula Videira 1, Arsénio M Fialho 1, Isabel Sá-Correia 1
PMCID: PMC1223213  PMID: 12444924

Abstract

The Sphingomonas paucimobilis beta-glucosidase Bgl1 is encoded by the bgl1 gene, associated with an 1308 bp open reading frame. The deduced protein has a potential signal peptide of 24 amino acids in the N-terminal region, and experimental evidence is consistent with the processing and export of the Bgl1 protein through the inner membrane to the periplasmic space. A His(6)-tagged 44.3 kDa protein was over-produced in the cytosol of Escherichia coli from a recombinant plasmid, which contained the S. paucimobilis bgl1 gene lacking the region encoding the putative signal peptide. Mature beta-glucosidase Bgl1 is specific for aryl-beta-glucosides and has no apparent activity with oligosaccharides derived from cellulose hydrolysis and other saccharides. A structure-based alignment established structural relations between S. paucimobilis Bgl1 and other members of the glycoside hydrolase (GH) family 1 enzymes. At subsite -1, the conserved residues required for catalysis by GH1 enzymes are present in Bgl1 with only minor differences. Major differences are found at subsite +1, the aglycone binding site. This alignment seeded a sequence-based phylogenetic analysis of GH1 enzymes, revealing an absence of horizontal transfer between phyla. Bootstrap analysis supported the definition of subfamilies and revealed that Bgl1, the first characterized beta-glucosidase from the genus Sphingomonas, represents a very divergent bacterial subfamily, closer to archaeal subfamilies than to others of bacterial origin.

Full Text

The Full Text of this article is available as a PDF (691.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender C. L., Alarcón-Chaidez F., Gross D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999 Jun;63(2):266–292. doi: 10.1128/mmbr.63.2.266-292.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Burmeister W. P., Cottaz S., Rollin P., Vasella A., Henrissat B. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem. 2000 Dec 15;275(50):39385–39393. doi: 10.1074/jbc.M006796200. [DOI] [PubMed] [Google Scholar]
  6. Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
  7. Czjzek M., Cicek M., Zamboni V., Bevan D. R., Henrissat B., Esen A. The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13555–13560. doi: 10.1073/pnas.97.25.13555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Czjzek M., Cicek M., Zamboni V., Burmeister W. P., Bevan D. R., Henrissat B., Esen A. Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochem J. 2001 Feb 15;354(Pt 1):37–46. doi: 10.1042/0264-6021:3540037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Rijk P., De Wachter R. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci. 1993 Dec;9(6):735–740. doi: 10.1093/bioinformatics/9.6.735. [DOI] [PubMed] [Google Scholar]
  11. Ducros Valérie M-A, Zechel David L., Murshudov Garib N., Gilbert Harry J., Szabó Lóránd, Stoll Dominik, Withers Stephen G., Davies Gideon J. Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl. 2002 Aug 2;41(15):2824–2827. doi: 10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  12. Faure D., Henrissat B., Ptacek D., Bekri M. A., Vanderleyden J. The celA gene, encoding a glycosyl hydrolase family 3 beta-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides. Appl Environ Microbiol. 2001 May;67(5):2380–2383. doi: 10.1128/AEM.67.5.2380-2383.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995 Dec;23(4):566–579. doi: 10.1002/prot.340230412. [DOI] [PubMed] [Google Scholar]
  14. Garcia-Vallvé S., Romeu A., Palau J. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 2000 Nov;10(11):1719–1725. doi: 10.1101/gr.130000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henrissat B., Coutinho P. M., Davies G. J. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol. 2001 Sep;47(1-2):55–72. [PubMed] [Google Scholar]
  19. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  20. Henrissat B., Romeu A. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J. 1995 Oct 1;311(Pt 1):350–351. doi: 10.1042/bj3110350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hughes M. A., Brown K., Pancoro A., Murray B. S., Oxtoby E., Hughes J. A molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Cranz). Arch Biochem Biophys. 1992 Jun;295(2):273–279. doi: 10.1016/0003-9861(92)90518-2. [DOI] [PubMed] [Google Scholar]
  22. Kang K. S., Veeder G. T., Mirrasoul P. J., Kaneko T., Cottrell I. W. Agar-like polysaccharide produced by a pseudomonas species: production and basic properties. Appl Environ Microbiol. 1982 May;43(5):1086–1091. doi: 10.1128/aem.43.5.1086-1091.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaper Thijs, van Heusden Hester H., van Loo Bert, Vasella Andrea, van der Oost John, de Vos Willem M. Substrate specificity engineering of beta-mannosidase and beta-glucosidase from Pyrococcus by exchange of unique active site residues. Biochemistry. 2002 Mar 26;41(12):4147–4155. doi: 10.1021/bi011935a. [DOI] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  26. Marri L., Valentini S., Venditti D. Cloning and nucleotide sequence of the bglA gene from Erwinia herbicola and expression of beta-glucosidase activity in Escherichia coli. FEMS Microbiol Lett. 1995 May 1;128(2):135–138. doi: 10.1111/j.1574-6968.1995.tb07512.x. [DOI] [PubMed] [Google Scholar]
  27. Mian I. S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol Dis. 1998 Jun;24(2):83–100. doi: 10.1006/bcmd.1998.9998. [DOI] [PubMed] [Google Scholar]
  28. Mizuguchi K., Deane C. M., Blundell T. L., Overington J. P. HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci. 1998 Nov;7(11):2469–2471. doi: 10.1002/pro.5560071126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peciña A., Pascual A., Paneque A. Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme. J Bacteriol. 1999 Mar;181(5):1409–1414. doi: 10.1128/jb.181.5.1409-1414.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rojas A., Arola L., Romeu A. beta-Glucosidase families revealed by computer analysis of protein sequences. Biochem Mol Biol Int. 1995 May;35(6):1223–1231. [PubMed] [Google Scholar]
  31. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  32. Sanz-Aparicio J., Hermoso J. A., Martínez-Ripoll M., Lequerica J. L., Polaina J. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998 Jan 23;275(3):491–502. doi: 10.1006/jmbi.1997.1467. [DOI] [PubMed] [Google Scholar]
  33. Schirmer F., Ehrt S., Hillen W. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol. 1997 Feb;179(4):1329–1336. doi: 10.1128/jb.179.4.1329-1336.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sobolev V., Sorokine A., Prilusky J., Abola E. E., Edelman M. Automated analysis of interatomic contacts in proteins. Bioinformatics. 1999 Apr;15(4):327–332. doi: 10.1093/bioinformatics/15.4.327. [DOI] [PubMed] [Google Scholar]
  35. Sá-Correia I., Fialho A. M., Videira P., Moreira L. M., Marques A. R., Albano H. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol. 2002 Oct;29(4):170–176. doi: 10.1038/sj.jim.7000266. [DOI] [PubMed] [Google Scholar]
  36. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol. 1995 Apr;45(2):334–341. doi: 10.1099/00207713-45-2-334. [DOI] [PubMed] [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Trimbur D. E., Warren R. A., Withers S. G. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis. J Biol Chem. 1992 May 25;267(15):10248–10251. [PubMed] [Google Scholar]
  39. Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994 Sep;10(5):569–570. doi: 10.1093/bioinformatics/10.5.569. [DOI] [PubMed] [Google Scholar]
  40. Videira P. A., Cortes L. L., Fialho A. M., Sá-Correia I. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol. 2000 May;66(5):2252–2258. doi: 10.1128/aem.66.5.2252-2258.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Videira P., Fialho A., Geremia R. A., Breton C., Sá-Correia I. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Biochem J. 2001 Sep 1;358(Pt 2):457–464. doi: 10.1042/0264-6021:3580457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Williamson G., Kroon P. A., Faulds C. B. Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology. 1998 Aug;144(Pt 8):2011–2023. doi: 10.1099/00221287-144-8-2011. [DOI] [PubMed] [Google Scholar]
  43. Yamazaki M., Thorne L., Mikolajczak M., Armentrout R. W., Pollock T. J. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol. 1996 May;178(9):2676–2687. doi: 10.1128/jb.178.9.2676-2687.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yun Na Rae, Shin Yong Kook, Hwang Se Young, Kuraishi Hiroshi, Sugiyama Junta. Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov. . J Gen Appl Microbiol. 2000 Feb;46(1):9–18. doi: 10.2323/jgam.46.9. [DOI] [PubMed] [Google Scholar]
  45. Zechel D. L., Withers S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res. 2000 Jan;33(1):11–18. doi: 10.1021/ar970172+. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES