Abstract
The Sphingomonas paucimobilis beta-glucosidase Bgl1 is encoded by the bgl1 gene, associated with an 1308 bp open reading frame. The deduced protein has a potential signal peptide of 24 amino acids in the N-terminal region, and experimental evidence is consistent with the processing and export of the Bgl1 protein through the inner membrane to the periplasmic space. A His(6)-tagged 44.3 kDa protein was over-produced in the cytosol of Escherichia coli from a recombinant plasmid, which contained the S. paucimobilis bgl1 gene lacking the region encoding the putative signal peptide. Mature beta-glucosidase Bgl1 is specific for aryl-beta-glucosides and has no apparent activity with oligosaccharides derived from cellulose hydrolysis and other saccharides. A structure-based alignment established structural relations between S. paucimobilis Bgl1 and other members of the glycoside hydrolase (GH) family 1 enzymes. At subsite -1, the conserved residues required for catalysis by GH1 enzymes are present in Bgl1 with only minor differences. Major differences are found at subsite +1, the aglycone binding site. This alignment seeded a sequence-based phylogenetic analysis of GH1 enzymes, revealing an absence of horizontal transfer between phyla. Bootstrap analysis supported the definition of subfamilies and revealed that Bgl1, the first characterized beta-glucosidase from the genus Sphingomonas, represents a very divergent bacterial subfamily, closer to archaeal subfamilies than to others of bacterial origin.
Full Text
The Full Text of this article is available as a PDF (691.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bender C. L., Alarcón-Chaidez F., Gross D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999 Jun;63(2):266–292. doi: 10.1128/mmbr.63.2.266-292.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burmeister W. P., Cottaz S., Rollin P., Vasella A., Henrissat B. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem. 2000 Dec 15;275(50):39385–39393. doi: 10.1074/jbc.M006796200. [DOI] [PubMed] [Google Scholar]
- Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
- Czjzek M., Cicek M., Zamboni V., Bevan D. R., Henrissat B., Esen A. The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13555–13560. doi: 10.1073/pnas.97.25.13555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czjzek M., Cicek M., Zamboni V., Burmeister W. P., Bevan D. R., Henrissat B., Esen A. Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochem J. 2001 Feb 15;354(Pt 1):37–46. doi: 10.1042/0264-6021:3540037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Rijk P., De Wachter R. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci. 1993 Dec;9(6):735–740. doi: 10.1093/bioinformatics/9.6.735. [DOI] [PubMed] [Google Scholar]
- Ducros Valérie M-A, Zechel David L., Murshudov Garib N., Gilbert Harry J., Szabó Lóránd, Stoll Dominik, Withers Stephen G., Davies Gideon J. Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl. 2002 Aug 2;41(15):2824–2827. doi: 10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Faure D., Henrissat B., Ptacek D., Bekri M. A., Vanderleyden J. The celA gene, encoding a glycosyl hydrolase family 3 beta-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides. Appl Environ Microbiol. 2001 May;67(5):2380–2383. doi: 10.1128/AEM.67.5.2380-2383.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995 Dec;23(4):566–579. doi: 10.1002/prot.340230412. [DOI] [PubMed] [Google Scholar]
- Garcia-Vallvé S., Romeu A., Palau J. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 2000 Nov;10(11):1719–1725. doi: 10.1101/gr.130000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Coutinho P. M., Davies G. J. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol. 2001 Sep;47(1-2):55–72. [PubMed] [Google Scholar]
- Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
- Henrissat B., Romeu A. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J. 1995 Oct 1;311(Pt 1):350–351. doi: 10.1042/bj3110350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes M. A., Brown K., Pancoro A., Murray B. S., Oxtoby E., Hughes J. A molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Cranz). Arch Biochem Biophys. 1992 Jun;295(2):273–279. doi: 10.1016/0003-9861(92)90518-2. [DOI] [PubMed] [Google Scholar]
- Kang K. S., Veeder G. T., Mirrasoul P. J., Kaneko T., Cottrell I. W. Agar-like polysaccharide produced by a pseudomonas species: production and basic properties. Appl Environ Microbiol. 1982 May;43(5):1086–1091. doi: 10.1128/aem.43.5.1086-1091.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaper Thijs, van Heusden Hester H., van Loo Bert, Vasella Andrea, van der Oost John, de Vos Willem M. Substrate specificity engineering of beta-mannosidase and beta-glucosidase from Pyrococcus by exchange of unique active site residues. Biochemistry. 2002 Mar 26;41(12):4147–4155. doi: 10.1021/bi011935a. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
- Marri L., Valentini S., Venditti D. Cloning and nucleotide sequence of the bglA gene from Erwinia herbicola and expression of beta-glucosidase activity in Escherichia coli. FEMS Microbiol Lett. 1995 May 1;128(2):135–138. doi: 10.1111/j.1574-6968.1995.tb07512.x. [DOI] [PubMed] [Google Scholar]
- Mian I. S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol Dis. 1998 Jun;24(2):83–100. doi: 10.1006/bcmd.1998.9998. [DOI] [PubMed] [Google Scholar]
- Mizuguchi K., Deane C. M., Blundell T. L., Overington J. P. HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci. 1998 Nov;7(11):2469–2471. doi: 10.1002/pro.5560071126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peciña A., Pascual A., Paneque A. Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme. J Bacteriol. 1999 Mar;181(5):1409–1414. doi: 10.1128/jb.181.5.1409-1414.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rojas A., Arola L., Romeu A. beta-Glucosidase families revealed by computer analysis of protein sequences. Biochem Mol Biol Int. 1995 May;35(6):1223–1231. [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Sanz-Aparicio J., Hermoso J. A., Martínez-Ripoll M., Lequerica J. L., Polaina J. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998 Jan 23;275(3):491–502. doi: 10.1006/jmbi.1997.1467. [DOI] [PubMed] [Google Scholar]
- Schirmer F., Ehrt S., Hillen W. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol. 1997 Feb;179(4):1329–1336. doi: 10.1128/jb.179.4.1329-1336.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobolev V., Sorokine A., Prilusky J., Abola E. E., Edelman M. Automated analysis of interatomic contacts in proteins. Bioinformatics. 1999 Apr;15(4):327–332. doi: 10.1093/bioinformatics/15.4.327. [DOI] [PubMed] [Google Scholar]
- Sá-Correia I., Fialho A. M., Videira P., Moreira L. M., Marques A. R., Albano H. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol. 2002 Oct;29(4):170–176. doi: 10.1038/sj.jim.7000266. [DOI] [PubMed] [Google Scholar]
- Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol. 1995 Apr;45(2):334–341. doi: 10.1099/00207713-45-2-334. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trimbur D. E., Warren R. A., Withers S. G. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis. J Biol Chem. 1992 May 25;267(15):10248–10251. [PubMed] [Google Scholar]
- Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994 Sep;10(5):569–570. doi: 10.1093/bioinformatics/10.5.569. [DOI] [PubMed] [Google Scholar]
- Videira P. A., Cortes L. L., Fialho A. M., Sá-Correia I. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol. 2000 May;66(5):2252–2258. doi: 10.1128/aem.66.5.2252-2258.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Videira P., Fialho A., Geremia R. A., Breton C., Sá-Correia I. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Biochem J. 2001 Sep 1;358(Pt 2):457–464. doi: 10.1042/0264-6021:3580457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson G., Kroon P. A., Faulds C. B. Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology. 1998 Aug;144(Pt 8):2011–2023. doi: 10.1099/00221287-144-8-2011. [DOI] [PubMed] [Google Scholar]
- Yamazaki M., Thorne L., Mikolajczak M., Armentrout R. W., Pollock T. J. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol. 1996 May;178(9):2676–2687. doi: 10.1128/jb.178.9.2676-2687.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yun Na Rae, Shin Yong Kook, Hwang Se Young, Kuraishi Hiroshi, Sugiyama Junta. Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov. . J Gen Appl Microbiol. 2000 Feb;46(1):9–18. doi: 10.2323/jgam.46.9. [DOI] [PubMed] [Google Scholar]
- Zechel D. L., Withers S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res. 2000 Jan;33(1):11–18. doi: 10.1021/ar970172+. [DOI] [PubMed] [Google Scholar]