Abstract
5-Aminoimidazole-4-carboxamide (AICA) riboside, a precursor of purine nucleotide biosynthesis, induces apoptosis in Jurkat cells. Incorporation of AICAriboside into the cells is necessary for this effect since addition of nitrobenzylthioinosine, a nucleoside-transport inhibitor, completely protects Jurkat cells from apoptosis. Adenosine, but not other nucleosides, also protects Jurkat cells from AICAriboside-induced apoptosis. The apoptotic effect is caspase-dependent since caspases 9 and 3 are activated and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk) blocks apoptosis. Furthermore, AICAriboside induces mitochondrial cytochrome c release. AICAriboside, when phosphorylated to AICAribotide (ZMP), is a specific activator of the AMP-activated protein kinase (AMPK) in certain cell types. However, AICAriboside does not activate AMPK in Jurkat cells. Moreover, 5-iodotubercidin, an inhibitor of AICAriboside phosphorylation, does not inhibit apoptosis in Jurkat cells. These results indicate that AICAriboside induces apoptosis independently of ZMP synthesis and AMPK activation in Jurkat cells.
Full Text
The Full Text of this article is available as a PDF (186.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barankiewicz J., Jimenez R., Ronlov G., Magill M., Gruber H. E. Alteration of purine metabolism by AICA-riboside in human B lymphoblasts. Arch Biochem Biophys. 1990 Nov 1;282(2):377–385. doi: 10.1016/0003-9861(90)90132-i. [DOI] [PubMed] [Google Scholar]
- Blázquez C., Geelen M. J., Velasco G., Guzmán M. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001 Feb 2;489(2-3):149–153. doi: 10.1016/s0014-5793(01)02089-0. [DOI] [PubMed] [Google Scholar]
- Corton J. M., Gillespie J. G., Hawley S. A., Hardie D. G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. [DOI] [PubMed] [Google Scholar]
- Crute B. E., Seefeld K., Gamble J., Kemp B. E., Witters L. A. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 1998 Dec 25;273(52):35347–35354. doi: 10.1074/jbc.273.52.35347. [DOI] [PubMed] [Google Scholar]
- Durante P., Gueuning M. A., Darville M. I., Hue L., Rousseau G. G. Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2,6-bisphosphate. FEBS Lett. 1999 Apr 9;448(2-3):239–243. doi: 10.1016/s0014-5793(99)00387-7. [DOI] [PubMed] [Google Scholar]
- Hardie D. G., Salt I. P., Hawley S. A., Davies S. P. AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J. 1999 Mar 15;338(Pt 3):717–722. [PMC free article] [PubMed] [Google Scholar]
- Hawley S. A., Davison M., Woods A., Davies S. P., Beri R. K., Carling D., Hardie D. G. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996 Nov 1;271(44):27879–27887. doi: 10.1074/jbc.271.44.27879. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Paterson A. R., Caldwell I. C., Paul B., Chan M. C., Lau K. F. Inhibitors of nucleoside and nucleotide metabolism. Cancer Chemother Rep 2. 1972 Nov;3(1):71–85. [PubMed] [Google Scholar]
- Henin N., Vincent M. F., Gruber H. E., Van den Berghe G. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J. 1995 Apr;9(7):541–546. doi: 10.1096/fasebj.9.7.7737463. [DOI] [PubMed] [Google Scholar]
- Ido Yasuo, Carling David, Ruderman Neil. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 2002 Jan;51(1):159–167. doi: 10.2337/diabetes.51.1.159. [DOI] [PubMed] [Google Scholar]
- Kurth-Kraczek E. J., Hirshman M. F., Goodyear L. J., Winder W. W. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999 Aug;48(8):1667–1671. doi: 10.2337/diabetes.48.8.1667. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lochhead P. A., Salt I. P., Walker K. S., Hardie D. G., Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000 Jun;49(6):896–903. doi: 10.2337/diabetes.49.6.896. [DOI] [PubMed] [Google Scholar]
- Marsin A. S., Bertrand L., Rider M. H., Deprez J., Beauloye C., Vincent M. F., Van den Berghe G., Carling D., Hue L. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000 Oct 19;10(20):1247–1255. doi: 10.1016/s0960-9822(00)00742-9. [DOI] [PubMed] [Google Scholar]
- Meisse Delphine, Van de Casteele Mark, Beauloye Christophe, Hainault Isabelle, Kefas Benjamin A., Rider Mark H., Foufelle Fabienne, Hue Louis. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002 Aug 28;526(1-3):38–42. doi: 10.1016/s0014-5793(02)03110-1. [DOI] [PubMed] [Google Scholar]
- Pastor-Anglada M., Felipe A., Casado F. J. Transport and mode of action of nucleoside derivatives used in chemical and antiviral therapies. Trends Pharmacol Sci. 1998 Oct;19(10):424–430. doi: 10.1016/s0165-6147(98)01253-x. [DOI] [PubMed] [Google Scholar]
- Pesi R., Micheli V., Jacomelli G., Peruzzi L., Camici M., Garcia-Gil M., Allegrini S., Tozzi M. G. Cytosolic 5'-nucleotidase hyperactivity in erythrocytes of Lesch-Nyhan syndrome patients. Neuroreport. 2000 Jun 26;11(9):1827–1831. doi: 10.1097/00001756-200006260-00006. [DOI] [PubMed] [Google Scholar]
- Piqué M., Barragán M., Dalmau M., Bellosillo B., Pons G., Gil J. Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Lett. 2000 Sep 1;480(2-3):193–196. doi: 10.1016/s0014-5793(00)01922-0. [DOI] [PubMed] [Google Scholar]
- Reed J. C. Cytochrome c: can't live with it--can't live without it. Cell. 1997 Nov 28;91(5):559–562. doi: 10.1016/s0092-8674(00)80442-0. [DOI] [PubMed] [Google Scholar]
- Russell R. R., 3rd, Bergeron R., Shulman G. I., Young L. H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol. 1999 Aug;277(2 Pt 2):H643–H649. doi: 10.1152/ajpheart.1999.277.2.H643. [DOI] [PubMed] [Google Scholar]
- Sabina R. L., Patterson D., Holmes E. W. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem. 1985 May 25;260(10):6107–6114. [PubMed] [Google Scholar]
- Samari H. R., Seglen P. O. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem. 1998 Sep 11;273(37):23758–23763. doi: 10.1074/jbc.273.37.23758. [DOI] [PubMed] [Google Scholar]
- Sidi Y., Mitchell B. S. Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest. 1985 Dec;76(6):2416–2419. doi: 10.1172/JCI112255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefanelli C., Bonavita F., Stanic' I., Farruggia G., Falcieri E., Robuffo I., Pignatti C., Muscari C., Rossoni C., Guarnieri C. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J. 1997 Mar 15;322(Pt 3):909–917. doi: 10.1042/bj3220909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefanelli C., Stanic I., Bonavita F., Flamigni F., Pignatti C., Guarnieri C., Caldarera C. M. Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun. 1998 Feb 24;243(3):821–826. doi: 10.1006/bbrc.1998.8154. [DOI] [PubMed] [Google Scholar]
- Swain J. L., Hines J. J., Sabina R. L., Harbury O. L., Holmes E. W. Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction. J Clin Invest. 1984 Oct;74(4):1422–1427. doi: 10.1172/JCI111553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swain J. L., Hines J. J., Sabina R. L., Holmes E. W. Accelerated repletion of ATP and GTP pools in postischemic canine myocardium using a precursor of purine de novo synthesis. Circ Res. 1982 Jul;51(1):102–105. doi: 10.1161/01.res.51.1.102. [DOI] [PubMed] [Google Scholar]
- Thomas C. B., Meade J. C., Holmes E. W. Aminoimidazole carboxamide ribonucleoside toxicity: a model for study of pyrimidine starvation. J Cell Physiol. 1981 Jun;107(3):335–344. doi: 10.1002/jcp.1041070305. [DOI] [PubMed] [Google Scholar]
- Vincent M. F., Bontemps F., Van den Berghe G. Substrate cycling between 5-amino-4-imidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes. Biochem Pharmacol. 1996 Oct 11;52(7):999–1006. doi: 10.1016/0006-2952(96)00413-3. [DOI] [PubMed] [Google Scholar]
- Vincent M. F., Marangos P. J., Gruber H. E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991 Oct;40(10):1259–1266. doi: 10.2337/diab.40.10.1259. [DOI] [PubMed] [Google Scholar]
- Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001 Nov 15;15(22):2922–2933. [PubMed] [Google Scholar]