Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):995–1001. doi: 10.1042/BJ20021320

A point mutation in the UDP-glucose pyrophosphorylase gene results in decreases of UDP-glucose and inactivation of glycogen synthase.

Juan-Carlos Higuita 1, Alberto Alape-Girón 1, Monica Thelestam 1, Abram Katz 1
PMCID: PMC1223220  PMID: 12460121

Abstract

The regulatory role of UDP-glucose in glycogen biogenesis was investigated in fibroblasts containing a point mutation in the UDP-glucose pyrophosphorylase gene and, consequently, chronically low UDP-glucose levels (Qc). Comparisons were made with cells having the intact gene and restored UDP-glucose levels (G3). Glycogen was always very low in Qc cells. [(14)C]Glucose incorporation into glycogen was decreased and unaffected by insulin in Qc cells, whereas insulin stimulated glucose incorporation by approximately 50% in G3 cells. Glycogen synthase (GS) activity measured in vitro was virtually absent and the amount of enzyme in Qc cells was decreased by about 50%. The difference in GS activity between cells persisted even when G3 cells were devoid of glycogen. Incubation of G3 cell extracts with either exogenous UDP-glucose or glycogen resulted in increases in GS activity. Incubation of Qc cell extracts with exogenous UDP-glucose had no effect on GS activity; however, incubation with glycogen fully restored enzyme activity. Incubation of G3 cell extracts with radioactive UDP-glucose resulted in substantial binding of ligand to immunoprecipitated GS, whereas no binding was detected in Qc immunoprecipitates. Incubation of Qc cell extracts with exogenous glycogen fully restored UDP-glucose binding in the immunoprecipitate. These data suggest that chronically low UDP-glucose levels in cells result in inactivation of GS, owing to loss of the ability of GS to bind UDP-glucose.

Full Text

The Full Text of this article is available as a PDF (152.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso M. D., Lagzdins E. J., Lomako J., Lomako W. M., Whelan W. J. New and specific nucleoside diphosphate glucose substrates for glycogenin. FEBS Lett. 1995 Feb 13;359(2-3):110–112. doi: 10.1016/0014-5793(95)00018-5. [DOI] [PubMed] [Google Scholar]
  2. Alonso M. D., Lomako J., Lomako W. M., Whelan W. J. A new look at the biogenesis of glycogen. FASEB J. 1995 Sep;9(12):1126–1137. doi: 10.1096/fasebj.9.12.7672505. [DOI] [PubMed] [Google Scholar]
  3. Araki E., Lipes M. A., Patti M. E., Brüning J. C., Haag B., 3rd, Johnson R. S., Kahn C. R. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994 Nov 10;372(6502):186–190. doi: 10.1038/372186a0. [DOI] [PubMed] [Google Scholar]
  4. Ausems M. G., Lochman P., van Diggelen O. P., Ploos van Amstel H. K., Reuser A. J., Wokke J. H. A diagnostic protocol for adult-onset glycogen storage disease type II. Neurology. 1999 Mar 10;52(4):851–853. doi: 10.1212/wnl.52.4.851. [DOI] [PubMed] [Google Scholar]
  5. Bogardus C., Lillioja S. Where all the glucose doesn't go in non-insulin-dependent diabetes mellitus. N Engl J Med. 1990 Jan 25;322(4):262–263. doi: 10.1056/NEJM199001253220409. [DOI] [PubMed] [Google Scholar]
  6. Brady M. J., Kartha P. M., Aysola A. A., Saltiel A. R. The role of glucose metabolites in the activation and translocation of glycogen synthase by insulin in 3T3-L1 adipocytes. J Biol Chem. 1999 Sep 24;274(39):27497–27504. doi: 10.1074/jbc.274.39.27497. [DOI] [PubMed] [Google Scholar]
  7. Chambers J. K., Macdonald L. E., Sarau H. M., Ames R. S., Freeman K., Foley J. J., Zhu Y., McLaughlin M. M., Murdock P., McMillan L. A G protein-coupled receptor for UDP-glucose. J Biol Chem. 2000 Apr 14;275(15):10767–10771. doi: 10.1074/jbc.275.15.10767. [DOI] [PubMed] [Google Scholar]
  8. Chaves-Olarte E., Florin I., Boquet P., Popoff M., von Eichel-Streiber C., Thelestam M. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. J Biol Chem. 1996 Mar 22;271(12):6925–6932. doi: 10.1074/jbc.271.12.6925. [DOI] [PubMed] [Google Scholar]
  9. Cheng C., Mu J., Farkas I., Huang D., Goebl M. G., Roach P. J. Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Dec;15(12):6632–6640. doi: 10.1128/mcb.15.12.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRIEDMAN D. L., LARNER J. STUDIES ON UDPG-ALPHA-GLUCAN TRANSGLUCOSYLASE. III. INTERCONVERSION OF TWO FORMS OF MUSCLE UDPG-ALPHA-GLUCAN TRANSGLUCOSYLASE BY A PHOSPHORYLATION-DEPHOSPHORYLATION REACTION SEQUENCE. Biochemistry. 1963 Jul-Aug;2:669–675. doi: 10.1021/bi00904a009. [DOI] [PubMed] [Google Scholar]
  11. Flores-Díaz M., Alape-Girón A., Persson B., Pollesello P., Moos M., von Eichel-Streiber C., Thelestam M., Florin I. Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. J Biol Chem. 1997 Sep 19;272(38):23784–23791. doi: 10.1074/jbc.272.38.23784. [DOI] [PubMed] [Google Scholar]
  12. Flores-Díaz M., Alape-Girón A., Titball R. W., Moos M., Guillouard I., Cole S., Howells A. M., von Eichel-Streiber C., Florin I., Thelestam M. UDP-glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C. J Biol Chem. 1998 Sep 18;273(38):24433–24438. doi: 10.1074/jbc.273.38.24433. [DOI] [PubMed] [Google Scholar]
  13. Gannon M. C., Nuttall F. Q. Effect of prolonged starvation on glycogen synthase and glycogen synthase phosphatase activity in rat heart. J Nutr. 1984 Nov;114(11):2147–2154. doi: 10.1093/jn/114.11.2147. [DOI] [PubMed] [Google Scholar]
  14. Guinovart J. J., Salavert A., Massagué J., Ciudad C. J., Salsas E., Itarte E. Glycogen synthase: a new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett. 1979 Oct 15;106(2):284–288. doi: 10.1016/0014-5793(79)80515-3. [DOI] [PubMed] [Google Scholar]
  15. Gustafson L. A., Jumelle-Laclau M. N., van Woerkom G. M., van Kuilenburg A. B., Meijer A. J. Cell swelling and glycogen metabolism in hepatocytes from fasted rats. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):184–190. doi: 10.1016/s0005-2728(96)00128-4. [DOI] [PubMed] [Google Scholar]
  16. Harris R. C., Hultman E., Nordesjö L. O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974 Apr;33(2):109–120. [PubMed] [Google Scholar]
  17. Jiao Y., Shashkina E., Shashkin P., Hansson A., Katz A. Manganese sulfate-dependent glycosylation of endogenous glycoproteins in human skeletal muscle is catalyzed by a nonglucose 6-P-dependent glycogen synthase and not glycogenin. Biochim Biophys Acta. 1999 Mar 14;1427(1):1–12. doi: 10.1016/s0304-4165(98)00142-1. [DOI] [PubMed] [Google Scholar]
  18. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
  19. Katz A., Raz I. Rapid activation of glycogen synthase and protein phosphatase in human skeletal muscle after isometric contraction requires an intact circulation. Pflugers Arch. 1995 Dec;431(2):259–265. doi: 10.1007/BF00410199. [DOI] [PubMed] [Google Scholar]
  20. LARNER J., VILLAR-PALASI C., RICHMAN D. J. Insulin-stimulated glycogen formation in rat diaphragm. Levels of tissue intermediates in short-time experiments. Arch Biochem Biophys. 1960 Jan;86:56–60. doi: 10.1016/0003-9861(60)90367-2. [DOI] [PubMed] [Google Scholar]
  21. Larner J., Takeda Y., Hizukuri S. The influence of chain size and molecular weight on the kinetic constants for the span glucose to polysaccharide for rabbit muscle glycogen synthase. Mol Cell Biochem. 1976 Sep 30;12(3):131–136. doi: 10.1007/BF01741711. [DOI] [PubMed] [Google Scholar]
  22. Lawrence J. C., Jr, Larner J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem. 1978 Apr 10;253(7):2104–2113. [PubMed] [Google Scholar]
  23. Miller R. E., Miller E. A., Fredholm B., Yellin J. B., Eichner R. D., Mayer S. E., Steinberg D. Enzymes regulating glycogen metabolism in swine subcutaneous adipose tissue. II. Glycogen synthase. Biochemistry. 1975 Jun 3;14(11):2481–2488. doi: 10.1021/bi00682a030. [DOI] [PubMed] [Google Scholar]
  24. Nimmo H. G., Proud C. G., Cohen P. The purification and properties of rabbit skeletal muscle glycogen synthase. Eur J Biochem. 1976 Sep;68(1):21–30. doi: 10.1111/j.1432-1033.1976.tb10761.x. [DOI] [PubMed] [Google Scholar]
  25. Nur T., Sela I., Webster N. J., Madar Z. Starvation and refeeding regulate glycogen synthase gene expression in rat liver at the posttranscriptional level. J Nutr. 1995 Oct;125(10):2457–2462. doi: 10.1093/jn/125.10.2457. [DOI] [PubMed] [Google Scholar]
  26. Piras R., Staneloni R. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry. 1969 May;8(5):2153–2160. doi: 10.1021/bi00833a056. [DOI] [PubMed] [Google Scholar]
  27. ROSELL-PEREZ M., LARNER J. Studies on UDPG-glycogen transglucosylase. II. Species variation of glucose-6-phosphate sensitivity of UDPG-glycogen transglucosylase. Biochemistry. 1962 Sep;1:769–772. doi: 10.1021/bi00911a006. [DOI] [PubMed] [Google Scholar]
  28. ROSELL-PEREZ M., VILLAR-PALASI C., LARNER J. Studies on UDPG-glycogen transglucosylase. I. Preparation and differentiation of two activities of UDPG-glycogen transglucosylase from rat skeletal muscle. Biochemistry. 1962 Sep;1:763–768. doi: 10.1021/bi00911a005. [DOI] [PubMed] [Google Scholar]
  29. Roach P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990 Sep;4(12):2961–2968. [PubMed] [Google Scholar]
  30. Roach P. J., Skurat A. V. Self-glucosylating initiator proteins and their role in glycogen biosynthesis. Prog Nucleic Acid Res Mol Biol. 1997;57:289–316. doi: 10.1016/s0079-6603(08)60284-6. [DOI] [PubMed] [Google Scholar]
  31. Roach P. J., Takeda Y., Larner J. Rabbit skeletal muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties. J Biol Chem. 1976 Apr 10;251(7):1913–1919. [PubMed] [Google Scholar]
  32. Shashkin P., Koshkin A., Langley D., Ren J. M., Westerblad H., Katz A. Effects of CGS 9343B (a putative calmodulin antagonist) on isolated skeletal muscle. Dissociation of signaling pathways for insulin-mediated activation of glycogen synthase and hexose transport. J Biol Chem. 1995 Oct 27;270(43):25613–25618. doi: 10.1074/jbc.270.43.25613. [DOI] [PubMed] [Google Scholar]
  33. Skurat A. V., Dietrich A. D., Roach P. J. Glycogen synthase sensitivity to insulin and glucose-6-phosphate is mediated by both NH2- and COOH-terminal phosphorylation sites. Diabetes. 2000 Jul;49(7):1096–1100. doi: 10.2337/diabetes.49.7.1096. [DOI] [PubMed] [Google Scholar]
  34. Skurat A. V., Lim S. S., Roach P. J. Glycogen biogenesis in rat 1 fibroblasts expressing rabbit muscle glycogenin. Eur J Biochem. 1997 Apr 1;245(1):147–155. doi: 10.1111/j.1432-1033.1997.t01-1-00147.x. [DOI] [PubMed] [Google Scholar]
  35. Smythe C., Cohen P. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem. 1991 Sep 15;200(3):625–631. doi: 10.1111/j.1432-1033.1991.tb16225.x. [DOI] [PubMed] [Google Scholar]
  36. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spiro R. G., Spiro M. J. Studies on the biosynthesis of the hydroxylysine-liked disaccharide unit of basement membranes and collagens. I. Kidney glucosyltransferase. J Biol Chem. 1971 Aug 25;246(16):4899–4909. [PubMed] [Google Scholar]
  38. Tagaya M., Nakano K., Fukui T. A new affinity labeling reagent for the active site of glycogen synthase. Uridine diphosphopyridoxal. J Biol Chem. 1985 Jun 10;260(11):6670–6676. [PubMed] [Google Scholar]
  39. Tan A. W., Nuttall F. Q. Characteristics of the dephosphorylated form of phosphorylase purified from rat liver and measurement of its activity in crude liver preparations. Biochim Biophys Acta. 1975 Nov 20;410(1):45–60. doi: 10.1016/0005-2744(75)90206-5. [DOI] [PubMed] [Google Scholar]
  40. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  41. Wittenberger T., Schaller H. C., Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol. 2001 Mar 30;307(3):799–813. doi: 10.1006/jmbi.2001.4520. [DOI] [PubMed] [Google Scholar]
  42. Yan Z., Spencer M. K., Katz A. Effect of low glycogen on glycogen synthase in human muscle during and after exercise. Acta Physiol Scand. 1992 Aug;145(4):345–352. doi: 10.1111/j.1748-1716.1992.tb09374.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES