Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):987–993. doi: 10.1042/BJ20021523

Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline.

Xiaonan Zhu 1, Jiannan Song 1, Mei-Heng Mar 1, Lloyd J Edwards 1, Steven H Zeisel 1
PMCID: PMC1223223  PMID: 12466019

Abstract

Choline is an essential nutrient for humans and is derived from the diet as well as from de novo synthesis involving methylation of phosphatidylethanolamine catalysed by the enzyme phosphatidylethanolamine N -methyltransferase (PEMT). This is the only known pathway that produces new choline molecules. We used mice with a disrupted Pemt-2 gene (which encodes PEMT; Pemt (-/-)) that have previously been shown to possess no hepatic PEMT enzyme. Male, female and pregnant Pemt (-/-) and wild-type mice ( n =5-6 per diet group) were fed diets of different choline content (deficient, control, and supplemented). Livers were collected and analysed for choline metabolites, steatosis, and apoptotic [terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labelling (TUNEL)] positive cells. We found that, in livers of Pemt (-/-) mice fed any of the diets, there was hepatic steatosis and significantly higher occurrence of TUNEL positive cells compared with wild-type controls. In male, female and pregnant mice, liver phosphatidylcholine concentrations were significantly decreased in Pemt (-/-) choline deficient and in Pemt (-/-) choline control groups but returned to normal in Pemt (-/-) choline supplemented groups. Phosphocholine concentrations in liver were significantly diminished in knockout mice even when choline was supplemented to above dietary requirements. These results show that PEMT normally supplies a significant portion of the daily choline requirement in the mouse and, when this pathway is knocked out, mice are unable to attain normal concentrations of all choline metabolites even with a supplemental source of dietary choline.

Full Text

The Full Text of this article is available as a PDF (153.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright C. D., Liu R., Bethea T. C., Da Costa K. A., Salganik R. I., Zeisel S. H. Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J. 1996 Mar;10(4):510–516. doi: 10.1096/fasebj.10.4.8647350. [DOI] [PubMed] [Google Scholar]
  2. Albright C. D., Mar M. H., Friedrich C. B., Brown E. C., Zeisel S. H. Maternal choline availability alters the localization of p15Ink4B and p27Kip1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. Dev Neurosci. 2001;23(2):100–106. doi: 10.1159/000048701. [DOI] [PubMed] [Google Scholar]
  3. Albright C. D., Tsai A. Y., Friedrich C. B., Mar M. H., Zeisel S. H. Choline availability alters embryonic development of the hippocampus and septum in the rat. Brain Res Dev Brain Res. 1999 Mar 12;113(1-2):13–20. doi: 10.1016/s0165-3806(98)00183-7. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Buchman A. L., Ament M. E., Sohel M., Dubin M., Jenden D. J., Roch M., Pownall H., Farley W., Awal M., Ahn C. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr. 2001 Sep-Oct;25(5):260–268. doi: 10.1177/0148607101025005260. [DOI] [PubMed] [Google Scholar]
  6. Chandar N., Amenta J., Kandala J. C., Lombardi B. Liver cell turnover in rats fed a choline-devoid diet. Carcinogenesis. 1987 May;8(5):669–673. doi: 10.1093/carcin/8.5.669. [DOI] [PubMed] [Google Scholar]
  7. Cuadrado A., Carnero A., Dolfi F., Jiménez B., Lacal J. C. Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors. Oncogene. 1993 Nov;8(11):2959–2968. [PubMed] [Google Scholar]
  8. DeLong C. J., Shen Y. J., Thomas M. J., Cui Z. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem. 1999 Oct 15;274(42):29683–29688. doi: 10.1074/jbc.274.42.29683. [DOI] [PubMed] [Google Scholar]
  9. DeLong Cynthia J., Hicks Amy M., Cui Zheng. Disruption of choline methyl group donation for phosphatidylethanolamine methylation in hepatocarcinoma cells. J Biol Chem. 2002 Feb 25;277(19):17217–17225. doi: 10.1074/jbc.M108911200. [DOI] [PubMed] [Google Scholar]
  10. Drouva S. V., Rerat E., Leblanc P., Laplante E., Kordon C. Variations of phospholipid methyltransferase(s) activity in the rat pituitary: estrous cycle and sex differences. Endocrinology. 1987 Aug;121(2):569–574. doi: 10.1210/endo-121-2-569. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
  12. Holmes-McNary M. Q., Baldwin A. S., Jr, Zeisel S. H. Opposing regulation of choline deficiency-induced apoptosis by p53 and nuclear factor kappaB. J Biol Chem. 2001 Aug 1;276(44):41197–41204. doi: 10.1074/jbc.M010936200. [DOI] [PubMed] [Google Scholar]
  13. Koc Hasan, Mar Mei-Heng, Ranasinghe Asoka, Swenberg James A., Zeisel Steven H. Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal Chem. 2002 Sep 15;74(18):4734–4740. doi: 10.1021/ac025624x. [DOI] [PubMed] [Google Scholar]
  14. McGowan M. W., Artiss J. D., Strandbergh D. R., Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem. 1983 Mar;29(3):538–542. [PubMed] [Google Scholar]
  15. Noga Anna A., Zhao Yang, Vance Dennis E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem. 2002 Aug 21;277(44):42358–42365. doi: 10.1074/jbc.M204542200. [DOI] [PubMed] [Google Scholar]
  16. Pomfret E. A., daCosta K. A., Zeisel S. H. Effects of choline deficiency and methotrexate treatment upon rat liver. J Nutr Biochem. 1990 Oct;1(10):533–541. doi: 10.1016/0955-2863(90)90039-n. [DOI] [PubMed] [Google Scholar]
  17. Pyapali G. K., Turner D. A., Williams C. L., Meck W. H., Swartzwelder H. S. Prenatal dietary choline supplementation decreases the threshold for induction of long-term potentiation in young adult rats. J Neurophysiol. 1998 Apr;79(4):1790–1796. doi: 10.1152/jn.1998.79.4.1790. [DOI] [PubMed] [Google Scholar]
  18. Ridgway N. D., Vance D. E. Phosphatidylethanolamine N-methyltransferase from rat liver. Methods Enzymol. 1992;209:366–374. doi: 10.1016/0076-6879(92)09045-5. [DOI] [PubMed] [Google Scholar]
  19. Saito S., Iida A., Sekine A., Miura Y., Sakamoto T., Ogawa C., Kawauchi S., Higuchi S., Nakamura Y. Identification of 197 genetic variations in six human methyltranferase genes in the Japanese population. J Hum Genet. 2001;46(9):529–537. doi: 10.1007/s100380170035. [DOI] [PubMed] [Google Scholar]
  20. Selhub J., Seyoum E., Pomfret E. A., Zeisel S. H. Effects of choline deficiency and methotrexate treatment upon liver folate content and distribution. Cancer Res. 1991 Jan 1;51(1):16–21. [PubMed] [Google Scholar]
  21. Shin O. H., Mar M. H., Albright C. D., Citarella M. T., da Costa K. A., Zeisel S. H. Methyl-group donors cannot prevent apoptotic death of rat hepatocytes induced by choline-deficiency. J Cell Biochem. 1997 Feb;64(2):196–208. doi: 10.1002/(sici)1097-4644(199702)64:2<196::aid-jcb3>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  22. Sweiry J. H., Yudilevich D. L. Characterization of choline transport at maternal and fetal interfaces of the perfused guinea-pig placenta. J Physiol. 1985 Sep;366:251–266. doi: 10.1113/jphysiol.1985.sp015795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vance D. E., Walkey C. J., Cui Z. Phosphatidylethanolamine N-methyltransferase from liver. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):142–150. doi: 10.1016/s0005-2760(97)00108-2. [DOI] [PubMed] [Google Scholar]
  24. Waite Kristin A., Cabilio Nora R., Vance Dennis E. Choline deficiency-induced liver damage is reversible in Pemt(-/-) mice. J Nutr. 2002 Jan;132(1):68–71. doi: 10.1093/jn/132.1.68. [DOI] [PubMed] [Google Scholar]
  25. Walkey C. J., Donohue L. R., Bronson R., Agellon L. B., Vance D. E. Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12880–12885. doi: 10.1073/pnas.94.24.12880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walkey C. J., Yu L., Agellon L. B., Vance D. E. Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem. 1998 Oct 16;273(42):27043–27046. doi: 10.1074/jbc.273.42.27043. [DOI] [PubMed] [Google Scholar]
  27. Yao Z. M., Jamil H., Vance D. E. Choline deficiency causes translocation of CTP:phosphocholine cytidylyltransferase from cytosol to endoplasmic reticulum in rat liver. J Biol Chem. 1990 Mar 15;265(8):4326–4331. [PubMed] [Google Scholar]
  28. Yao Z. M., Vance D. E. Head group specificity in the requirement of phosphatidylcholine biosynthesis for very low density lipoprotein secretion from cultured hepatocytes. J Biol Chem. 1989 Jul 5;264(19):11373–11380. [PubMed] [Google Scholar]
  29. Yao Z. M., Vance D. E. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol. 1990 Feb;68(2):552–558. doi: 10.1139/o90-079. [DOI] [PubMed] [Google Scholar]
  30. Yao Z. M., Vance D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2998–3004. [PubMed] [Google Scholar]
  31. Zeisel S. H., Albright C. D., Shin O. H., Mar M. H., Salganik R. I., da Costa K. A. Choline deficiency selects for resistance to p53-independent apoptosis and causes tumorigenic transformation of rat hepatocytes. Carcinogenesis. 1997 Apr;18(4):731–738. doi: 10.1093/carcin/18.4.731. [DOI] [PubMed] [Google Scholar]
  32. Zeisel S. H., Blusztajn J. K. Choline and human nutrition. Annu Rev Nutr. 1994;14:269–296. doi: 10.1146/annurev.nu.14.070194.001413. [DOI] [PubMed] [Google Scholar]
  33. Zeisel S. H., Da Costa K. A., Franklin P. D., Alexander E. A., Lamont J. T., Sheard N. F., Beiser A. Choline, an essential nutrient for humans. FASEB J. 1991 Apr;5(7):2093–2098. [PubMed] [Google Scholar]
  34. Zeisel S. H., Mar M. H., Zhou Z., da Costa K. A. Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J Nutr. 1995 Dec;125(12):3049–3054. doi: 10.1093/jn/125.12.3049. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES