Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):881–889. doi: 10.1042/BJ20021128

The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself.

Adriana E M Klomp 1, Jenneke A Juijn 1, Linda T M van der Gun 1, Inge E T van den Berg 1, Ruud Berger 1, Leo W J Klomp 1
PMCID: PMC1223224  PMID: 12466020

Abstract

We have used indirect immunofluorescense studies and glycosylation-site insertion and deletion mapping to characterize the topology of human copper transporter 1 (hCTR1), the putative human high-affinity copper-import protein. Both approaches indicated that hCTR1 contains three transmembrane domains and that the N-terminus of hCTR1, which contains several putative copper-binding sites, is localized extracellularly, whereas the C-terminus is exposed to the cytosol. Based on previous observations that CTR1 proteins form high-molecular-mass complexes, we investigated directly whether CTR1 proteins interact with themselves. Yeast two-hybrid studies showed that interaction of yeast, mouse, rat and human CTR1 occurs at the sites of their N-terminal domains, and is not dependent on the copper concentration in the growth media. Analysis of deletion constructs indicated that multiple regions in the N-terminus are essential for this self-interaction. In contrast, the N-terminal tail of the presumed low-affinity copper transporter, hCTR2, does not interact with itself. Taken together, these results suggest that CTR1 spans the membrane at least six times, permitting formation of a channel, which is consistent with its proposed role as a copper transporter.

Full Text

The Full Text of this article is available as a PDF (371.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Takata K., Katagiri H., Ishihara H., Inukai K., Anai M., Hirano H., Yazaki Y., Oka Y. The role of N-glycosylation in the targeting and stability of GLUT1 glucose transporter. FEBS Lett. 1993 Jun 21;324(3):258–261. doi: 10.1016/0014-5793(93)80129-i. [DOI] [PubMed] [Google Scholar]
  2. Bastian W., Zhu J., Way B., Lockwood D., Livingston J. Glycosylation of Asn397 or Asn418 is required for normal insulin receptor biosynthesis and processing. Diabetes. 1993 Jul;42(7):966–974. doi: 10.2337/diab.42.7.966. [DOI] [PubMed] [Google Scholar]
  3. Dancis A., Haile D., Yuan D. S., Klausner R. D. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem. 1994 Oct 14;269(41):25660–25667. [PubMed] [Google Scholar]
  4. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  5. Deslauriers B., Ponce C., Lombard C., Larguier R., Bonnafous J. C., Marie J. N-glycosylation requirements for the AT1a angiotensin II receptor delivery to the plasma membrane. Biochem J. 1999 Apr 15;339(Pt 2):397–405. [PMC free article] [PubMed] [Google Scholar]
  6. Dix D. R., Bridgham J. T., Broderius M. A., Byersdorfer C. A., Eide D. J. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 21;269(42):26092–26099. [PubMed] [Google Scholar]
  7. Eisses John F., Kaplan Jack H. Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem. 2002 May 28;277(32):29162–29171. doi: 10.1074/jbc.M203652200. [DOI] [PubMed] [Google Scholar]
  8. Gaither L. A., Eide D. J. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000 Feb 25;275(8):5560–5564. doi: 10.1074/jbc.275.8.5560. [DOI] [PubMed] [Google Scholar]
  9. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983;101:181–191. doi: 10.1016/0076-6879(83)01013-7. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991 Sep 30;91(3C):14S–22S. doi: 10.1016/0002-9343(91)90279-7. [DOI] [PubMed] [Google Scholar]
  11. Helenius A., Aebi M. Intracellular functions of N-linked glycans. Science. 2001 Mar 23;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. [DOI] [PubMed] [Google Scholar]
  12. Himelblau E., Amasino R. M. Delivering copper within plant cells. Curr Opin Plant Biol. 2000 Jun;3(3):205–210. [PubMed] [Google Scholar]
  13. Klomp Adriana E. M., Tops Bastiaan B. J., Van Denberg Inge E. T., Berger Ruud, Klomp Leo W. J. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J. 2002 Jun 1;364(Pt 2):497–505. doi: 10.1042/BJ20011803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klomp L. W., Lin S. J., Yuan D. S., Klausner R. D., Culotta V. C., Gitlin J. D. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997 Apr 4;272(14):9221–9226. doi: 10.1074/jbc.272.14.9221. [DOI] [PubMed] [Google Scholar]
  15. Knight S. A., Labbé S., Kwon L. F., Kosman D. J., Thiele D. J. A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 1996 Aug 1;10(15):1917–1929. doi: 10.1101/gad.10.15.1917. [DOI] [PubMed] [Google Scholar]
  16. Kuo S. C., Lampen O. Tunicamycin inhibition of (3H) glucosamine incorporation into yeast glycoproteins: binding of tunicamycin and interaction with phospholipids. Arch Biochem Biophys. 1976 Feb;172(2):574–581. doi: 10.1016/0003-9861(76)90110-7. [DOI] [PubMed] [Google Scholar]
  17. Kuo Y. M., Zhou B., Cosco D., Gitschier J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6836–6841. doi: 10.1073/pnas.111057298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  19. Larin D., Mekios C., Das K., Ross B., Yang A. S., Gilliam T. C. Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J Biol Chem. 1999 Oct 1;274(40):28497–28504. doi: 10.1074/jbc.274.40.28497. [DOI] [PubMed] [Google Scholar]
  20. Lee J., Prohaska J. R., Dagenais S. L., Glover T. W., Thiele D. J. Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene. 2000 Aug 22;254(1-2):87–96. doi: 10.1016/s0378-1119(00)00287-0. [DOI] [PubMed] [Google Scholar]
  21. Lee J., Prohaska J. R., Thiele D. J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6842–6847. doi: 10.1073/pnas.111058698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee Jaekwon, Peña Maria Marjorette O., Nose Yasuhiro, Thiele Dennis J. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2001 Dec 4;277(6):4380–4387. doi: 10.1074/jbc.M104728200. [DOI] [PubMed] [Google Scholar]
  23. Møller L. B., Petersen C., Lund C., Horn N. Characterization of the hCTR1 gene: genomic organization, functional expression, and identification of a highly homologous processed gene. Gene. 2000 Oct 17;257(1):13–22. doi: 10.1016/s0378-1119(00)00394-2. [DOI] [PubMed] [Google Scholar]
  24. Nilsson I. M., von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993 Mar 15;268(8):5798–5801. [PubMed] [Google Scholar]
  25. Ooi C. E., Rabinovich E., Dancis A., Bonifacino J. S., Klausner R. D. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J. 1996 Jul 15;15(14):3515–3523. [PMC free article] [PubMed] [Google Scholar]
  26. Ott Carolyn M., Lingappa Vishwanath R. Integral membrane protein biosynthesis: why topology is hard to predict. J Cell Sci. 2002 May 15;115(Pt 10):2003–2009. doi: 10.1242/jcs.115.10.2003. [DOI] [PubMed] [Google Scholar]
  27. Pena M. M., Puig S., Thiele D. J. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem. 2000 Oct 27;275(43):33244–33251. doi: 10.1074/jbc.M005392200. [DOI] [PubMed] [Google Scholar]
  28. Puig Sergi, Lee Jaekwon, Lau Miranda, Thiele Dennis J. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem. 2002 Apr 30;277(29):26021–26030. doi: 10.1074/jbc.M202547200. [DOI] [PubMed] [Google Scholar]
  29. Puig Sergi, Thiele Dennis J. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol. 2002 Apr;6(2):171–180. doi: 10.1016/s1367-5931(02)00298-3. [DOI] [PubMed] [Google Scholar]
  30. Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O'Halloran T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999 Apr 30;284(5415):805–808. doi: 10.1126/science.284.5415.805. [DOI] [PubMed] [Google Scholar]
  31. Tifft C. J., Proia R. L., Camerini-Otero R. D. The folding and cell surface expression of CD4 requires glycosylation. J Biol Chem. 1992 Feb 15;267(5):3268–3273. [PubMed] [Google Scholar]
  32. Valentine J. S., Gralla E. B. Delivering copper inside yeast and human cells. Science. 1997 Oct 31;278(5339):817–818. doi: 10.1126/science.278.5339.817. [DOI] [PubMed] [Google Scholar]
  33. Wernimont Amy K., Huffman David L., Finney Lydia A., Demeler Borries, O'Halloran Thomas V., Rosenzweig Amy C. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. J Biol Inorg Chem. 2002 Sep 27;8(1-2):185–194. doi: 10.1007/s00775-002-0404-9. [DOI] [PubMed] [Google Scholar]
  34. Yamaguchi Y., Heiny M. E., Gitlin J. D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun. 1993 Nov 30;197(1):271–277. doi: 10.1006/bbrc.1993.2471. [DOI] [PubMed] [Google Scholar]
  35. Yonkovich Jesse, McKenndry Roslyn, Shi Xiaoli, Zhu Zhiwu. Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J Biol Chem. 2002 May 14;277(27):23981–23984. doi: 10.1074/jbc.C200203200. [DOI] [PubMed] [Google Scholar]
  36. Zhao H., Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2454–2458. doi: 10.1073/pnas.93.6.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhou B., Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7481–7486. doi: 10.1073/pnas.94.14.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhou H., Thiele D. J. Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem. 2001 Mar 26;276(23):20529–20535. doi: 10.1074/jbc.M102004200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES