Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):751–762. doi: 10.1042/BJ20021594

Mitochondrial threshold effects.

Rodrigue Rossignol 1, Benjamin Faustin 1, Christophe Rocher 1, Monique Malgat 1, Jean-Pierre Mazat 1, Thierry Letellier 1
PMCID: PMC1223225  PMID: 12467494

Abstract

The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.

Full Text

The Full Text of this article is available as a PDF (241.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi Giuseppe, Enriquez José A., Cabezas-Herrera Juan. Inter-mitochondrial complementation of mtDNA mutations and nuclear context. Nat Genet. 2002 Apr;30(4):360–361. doi: 10.1038/ng0402-360. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Shakeley R. M., Attardi G. Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Mol Cell Biol. 2000 Feb;20(3):805–815. doi: 10.1128/mcb.20.3.805-815.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrientos A., Moraes C. T. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999 Jun 4;274(23):16188–16197. doi: 10.1074/jbc.274.23.16188. [DOI] [PubMed] [Google Scholar]
  4. Beauvoit B., Rigoulet M. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products? IUBMB Life. 2001 Sep-Nov;52(3-5):143–152. doi: 10.1080/152165401317316545. [DOI] [PubMed] [Google Scholar]
  5. Bentlage H. A., Attardi G. Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell lines carrying the 3243 mutation associated with the MELAS encephalomyopathy: shift towards mutant genotype and role of mtDNA copy number. Hum Mol Genet. 1996 Feb;5(2):197–205. doi: 10.1093/hmg/5.2.197. [DOI] [PubMed] [Google Scholar]
  6. Bernardi P., Petronilli V., Di Lisa F., Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001 Feb;26(2):112–117. doi: 10.1016/s0968-0004(00)01745-x. [DOI] [PubMed] [Google Scholar]
  7. Boulet L., Karpati G., Shoubridge E. A. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet. 1992 Dec;51(6):1187–1200. [PMC free article] [PubMed] [Google Scholar]
  8. Bourgeron T., Chretien D., Amati P., Rötig A., Munnich A., Rustin P. Expression of respiratory chain deficiencies in human cultured cells. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):605–608. doi: 10.1016/0960-8966(93)90124-3. [DOI] [PubMed] [Google Scholar]
  9. Bourgeron T., Chretien D., Rötig A., Munnich A., Rustin P. Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J Biol Chem. 1993 Sep 15;268(26):19369–19376. [PubMed] [Google Scholar]
  10. Brown M. D. The enigmatic relationship between mitochondrial dysfunction and Leber's hereditary optic neuropathy. J Neurol Sci. 1999 May 1;165(1):1–5. doi: 10.1016/s0022-510x(99)00087-8. [DOI] [PubMed] [Google Scholar]
  11. Böttcher Bettina, Scheide Dierk, Hesterberg Micaela, Nagel-Steger Luitgard, Friedrich Thorsten. A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2002 Mar 5;277(20):17970–17977. doi: 10.1074/jbc.M112357200. [DOI] [PubMed] [Google Scholar]
  12. Campos Y., Martín M. A., Rubio J. C., Solana L. G., García-Benayas C., Terradas J. L., Arenas J. Leigh syndrome associated with the T9176C mutation in the ATPase 6 gene of mitochondrial DNA. Neurology. 1997 Aug;49(2):595–597. doi: 10.1212/wnl.49.2.595. [DOI] [PubMed] [Google Scholar]
  13. Capaldi R. A. The changing face of mitochondrial research. Trends Biochem Sci. 2000 May;25(5):212–214. doi: 10.1016/s0968-0004(00)01584-x. [DOI] [PubMed] [Google Scholar]
  14. Chinnery P. F., Andrews R. M., Turnbull D. M., Howell N. N. Leber hereditary optic neuropathy: Does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet. 2001 Jan 22;98(3):235–243. doi: 10.1002/1096-8628(20010122)98:3<235::aid-ajmg1086>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  15. Chinnery P. F., Taylor D. J., Brown D. T., Manners D., Styles P., Lodi R. Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo. Ann Neurol. 2000 Mar;47(3):381–384. [PubMed] [Google Scholar]
  16. Chinnery P. F., Taylor D. J., Manners D., Styles P., Lodi R. No correlation between muscle A3243G mutation load and mitochondrial function in vivo. Neurology. 2001 Apr 24;56(8):1101–1104. doi: 10.1212/wnl.56.8.1101. [DOI] [PubMed] [Google Scholar]
  17. Chinnery P. F., Thorburn D. R., Samuels D. C., White S. L., Dahl H. M., Turnbull D. M., Lightowlers R. N., Howell N. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 2000 Nov;16(11):500–505. doi: 10.1016/s0168-9525(00)02120-x. [DOI] [PubMed] [Google Scholar]
  18. Chinnery P. F., Turnbull D. M. Mitochondrial DNA and disease. Lancet. 1999 Jul;354 (Suppl 1):SI17–SI21. doi: 10.1016/s0140-6736(99)90244-1. [DOI] [PubMed] [Google Scholar]
  19. Chinnery P. F., Turnbull D. M. Mitochondrial DNA mutations in the pathogenesis of human disease. Mol Med Today. 2000 Nov;6(11):425–432. doi: 10.1016/s1357-4310(00)01805-0. [DOI] [PubMed] [Google Scholar]
  20. Chinnery P. F., Zwijnenburg P. J., Walker M., Howell N., Taylor R. W., Lightowlers R. N., Bindoff L., Turnbull D. M. Nonrandom tissue distribution of mutant mtDNA. Am J Med Genet. 1999 Aug 27;85(5):498–501. [PubMed] [Google Scholar]
  21. Chomyn A., Enriquez J. A., Micol V., Fernandez-Silva P., Attardi G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem. 2000 Jun 23;275(25):19198–19209. doi: 10.1074/jbc.M908734199. [DOI] [PubMed] [Google Scholar]
  22. Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S. T., Nonaka I., Angelini C., Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. doi: 10.1073/pnas.89.10.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chomyn A., Meola G., Bresolin N., Lai S. T., Scarlato G., Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. 1991 Apr;11(4):2236–2244. doi: 10.1128/mcb.11.4.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chomyn A. The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet. 1998 Apr;62(4):745–751. doi: 10.1086/301813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chung A. B., Stepien G., Haraguchi Y., Li K., Wallace D. C. Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase beta subunit. Multiple factors interact with the OXBOX/REBOX promoter sequences. J Biol Chem. 1992 Oct 15;267(29):21154–21161. [PubMed] [Google Scholar]
  26. D'Aurelio M., Pallotti F., Barrientos A., Gajewski C. D., Kwong J. Q., Bruno C., Beal M. F., Manfredi G. In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem. 2001 Oct 10;276(50):46925–46932. doi: 10.1074/jbc.M106429200. [DOI] [PubMed] [Google Scholar]
  27. Davey G. P., Canevari L., Clark J. B. Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem. 1997 Dec;69(6):2564–2570. doi: 10.1046/j.1471-4159.1997.69062564.x. [DOI] [PubMed] [Google Scholar]
  28. Davey G. P., Clark J. B. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem. 1996 Apr;66(4):1617–1624. doi: 10.1046/j.1471-4159.1996.66041617.x. [DOI] [PubMed] [Google Scholar]
  29. Davey G. P., Peuchen S., Clark J. B. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem. 1998 May 22;273(21):12753–12757. doi: 10.1074/jbc.273.21.12753. [DOI] [PubMed] [Google Scholar]
  30. DiMauro S., Schon E. A. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001 Spring;106(1):18–26. doi: 10.1002/ajmg.1392. [DOI] [PubMed] [Google Scholar]
  31. Elliott Sean J., Léger Christophe, Pershad Harsh R., Hirst Judy, Heffron Kerensa, Ginet Nicolas, Blasco Francis, Rothery Richard A., Weiner Joel H., Armstrong Fraser A. Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim Biophys Acta. 2002 Sep 10;1555(1-3):54–59. doi: 10.1016/s0005-2728(02)00254-2. [DOI] [PubMed] [Google Scholar]
  32. Enriquez J. A., Chomyn A., Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55. doi: 10.1038/ng0595-47. [DOI] [PubMed] [Google Scholar]
  33. Enríquez J. A., Attardi G. Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8300–8305. doi: 10.1073/pnas.93.16.8300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Enríquez J. A., Cabezas-Herrera J., Bayona-Bafaluy M. P., Attardi G. Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem. 2000 Apr 14;275(15):11207–11215. doi: 10.1074/jbc.275.15.11207. [DOI] [PubMed] [Google Scholar]
  35. Erecińska M., Wilson D. F. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. doi: 10.1007/BF01871584. [DOI] [PubMed] [Google Scholar]
  36. Fischel-Ghodsian N. Homoplasmic mitochondrial DNA diseases as the paradigm to understand the tissue specificity and variable clinical severity of mitochondrial disorders. Mol Genet Metab. 2000 Sep-Oct;71(1-2):93–99. doi: 10.1006/mgme.2000.3014. [DOI] [PubMed] [Google Scholar]
  37. Fischel-Ghodsian N. Mitochondrial genetics and hearing loss: the missing link between genotype and phenotype. Proc Soc Exp Biol Med. 1998 May;218(1):1–6. doi: 10.3181/00379727-218-44262. [DOI] [PubMed] [Google Scholar]
  38. Frey T. G., Mannella C. A. The internal structure of mitochondria. Trends Biochem Sci. 2000 Jul;25(7):319–324. doi: 10.1016/s0968-0004(00)01609-1. [DOI] [PubMed] [Google Scholar]
  39. Gattermann N., Retzlaff S., Wang Y. L., Hofhaus G., Heinisch J., Aul C., Schneider W. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood. 1997 Dec 15;90(12):4961–4972. [PubMed] [Google Scholar]
  40. Gnaiger E., Lassnig B., Kuznetsov A., Rieger G., Margreiter R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol. 1998 Apr;201(Pt 8):1129–1139. doi: 10.1242/jeb.201.8.1129. [DOI] [PubMed] [Google Scholar]
  41. Goldman E., Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 1990 Dec;4(12):2035–2040. doi: 10.1111/j.1365-2958.1990.tb00563.x. [DOI] [PubMed] [Google Scholar]
  42. Grivennikova V. G., Kapustin A. N., Vinogradov A. D. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition. J Biol Chem. 2000 Dec 21;276(12):9038–9044. doi: 10.1074/jbc.M009661200. [DOI] [PubMed] [Google Scholar]
  43. Grivennikova Vera G., Serebryanaya Darya V., Isakova Elena P., Belozerskaya Tatyana A., Vinogradov Andrei D. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa. Biochem J. 2003 Feb 1;369(Pt 3):619–626. doi: 10.1042/BJ20021165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Guan M. X., Enriquez J. A., Fischel-Ghodsian N., Puranam R. S., Lin C. P., Maw M. A., Attardi G. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol. 1998 Oct;18(10):5868–5879. doi: 10.1128/mcb.18.10.5868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Guan M. X., Fischel-Ghodsian N., Attardi G. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet. 2001 Mar 15;10(6):573–580. doi: 10.1093/hmg/10.6.573. [DOI] [PubMed] [Google Scholar]
  46. Hanna M. G., Nelson I. P., Morgan-Hughes J. A., Harding A. E. Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A-->G (MERRF) mutation: relationship to proportion of mutant mitochondrial DNA. J Neurol Sci. 1995 Jun;130(2):154–160. doi: 10.1016/0022-510x(95)00022-t. [DOI] [PubMed] [Google Scholar]
  47. Hanna M. G., Nelson I. P., Morgan-Hughes J. A., Wood N. W. MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):512–517. doi: 10.1136/jnnp.65.4.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hanson B. J., Carrozzo R., Piemonte F., Tessa A., Robinson B. H., Capaldi R. A. Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J Biol Chem. 2001 Feb 7;276(19):16296–16301. doi: 10.1074/jbc.M011162200. [DOI] [PubMed] [Google Scholar]
  49. Harvey Alexandra J., Kind Karen L., Thompson Jeremy G. REDOX regulation of early embryo development. Reproduction. 2002 Apr;123(4):479–486. doi: 10.1530/rep.0.1230479. [DOI] [PubMed] [Google Scholar]
  50. Hayashi J., Ohta S., Kikuchi A., Takemitsu M., Goto Y., Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10614–10618. doi: 10.1073/pnas.88.23.10614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hayashi J., Ohta S., Takai D., Miyabayashi S., Sakuta R., Goto Y., Nonaka I. Accumulation of mtDNA with a mutation at position 3271 in tRNA(Leu)(UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1049–1055. doi: 10.1006/bbrc.1993.2584. [DOI] [PubMed] [Google Scholar]
  52. Heddi A., Stepien G., Benke P. J., Wallace D. C. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem. 1999 Aug 13;274(33):22968–22976. doi: 10.1074/jbc.274.33.22968. [DOI] [PubMed] [Google Scholar]
  53. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  54. Helm M., Florentz C., Chomyn A., Attardi G. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res. 1999 Feb 1;27(3):756–763. doi: 10.1093/nar/27.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hofhaus G., Johns D. R., Hurko O., Attardi G., Chomyn A. Respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber's hereditary optic neuropathy. J Biol Chem. 1996 May 31;271(22):13155–13161. doi: 10.1074/jbc.271.22.13155. [DOI] [PubMed] [Google Scholar]
  56. Holt I. J., Harding A. E., Morgan-Hughes J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988 Feb 25;331(6158):717–719. doi: 10.1038/331717a0. [DOI] [PubMed] [Google Scholar]
  57. James A. M., Wei Y. H., Pang C. Y., Murphy M. P. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J. 1996 Sep 1;318(Pt 2):401–407. doi: 10.1042/bj3180401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  59. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Kadenbach B., Hüttemann M., Arnold S., Lee I., Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med. 2000 Aug;29(3-4):211–221. doi: 10.1016/s0891-5849(00)00305-1. [DOI] [PubMed] [Google Scholar]
  61. King M. P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989 Oct 27;246(4929):500–503. doi: 10.1126/science.2814477. [DOI] [PubMed] [Google Scholar]
  62. King M. P., Attardi G. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell. 1988 Mar 25;52(6):811–819. doi: 10.1016/0092-8674(88)90423-0. [DOI] [PubMed] [Google Scholar]
  63. Korzeniewski B., Malgat M., Letellier T., Mazat J. P. Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases. Biochem J. 2001 Aug 1;357(Pt 3):835–842. doi: 10.1042/0264-6021:3570835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Korzeniewski B. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim Biophys Acta. 2001 Mar 1;1504(1):31–45. doi: 10.1016/s0005-2728(00)00237-1. [DOI] [PubMed] [Google Scholar]
  65. Kunz W. S., Kudin A., Vielhaber S., Elger C. E., Attardi G., Villani G. Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem. 2000 Sep 8;275(36):27741–27745. doi: 10.1074/jbc.M004833200. [DOI] [PubMed] [Google Scholar]
  66. LUFT R., IKKOS D., PALMIERI G., ERNSTER L., AFZELIUS B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962 Sep;41:1776–1804. doi: 10.1172/JCI104637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lehman John J., Kelly Daniel P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002 Apr;29(4):339–345. doi: 10.1046/j.1440-1681.2002.03655.x. [DOI] [PubMed] [Google Scholar]
  68. Letellier T., Heinrich R., Malgat M., Mazat J. P. The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J. 1994 Aug 15;302(Pt 1):171–174. doi: 10.1042/bj3020171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Ludwig B., Bender E., Arnold S., Hüttemann M., Lee I., Kadenbach B. Cytochrome C oxidase and the regulation of oxidative phosphorylation. Chembiochem. 2001 Jun 1;2(6):392–403. doi: 10.1002/1439-7633(20010601)2:6<392::AID-CBIC392>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  70. Lécher P., Béziat F., Alziari S. Tissular distribution of heteroplasmy and ultrastructural studies of mitochondria from a Drosophila subobscura mitochondrial deletion mutant. Biol Cell. 1994;80(1):25–33. doi: 10.1016/0248-4900(94)90013-2. [DOI] [PubMed] [Google Scholar]
  71. Lécher P., Petit N., Le Goff S., Alziari S. Quantitative analysis, by ultrastructural in situ hybridization, of mitochondrial genomes and their expression in mid-gut and ovarian cells of a mutant strain of Drosophila subobscura. Biol Cell. 2000 Aug;92(5):341–350. doi: 10.1016/s0248-4900(00)01075-3. [DOI] [PubMed] [Google Scholar]
  72. Mariotti C., Savarese N., Suomalainen A., Rimoldi M., Comi G., Prelle A., Antozzi C., Servidei S., Jarre L., DiDonato S. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol. 1995 May;242(5):304–312. doi: 10.1007/BF00878873. [DOI] [PubMed] [Google Scholar]
  73. Matthews P. M., Brown R. M., Morten K., Marchington D., Poulton J., Brown G. Intracellular heteroplasmy for disease-associated point mutations in mtDNA: implications for disease expression and evidence for mitotic segregation of heteroplasmic units of mtDNA. Hum Genet. 1995 Sep;96(3):261–268. doi: 10.1007/BF00210404. [DOI] [PubMed] [Google Scholar]
  74. Mazat J. P., Letellier T., Bédes F., Malgat M., Korzeniewski B., Jouaville L. S., Morkuniene R. Metabolic control analysis and threshold effect in oxidative phosphorylation: implications for mitochondrial pathologies. Mol Cell Biochem. 1997 Sep;174(1-2):143–148. [PubMed] [Google Scholar]
  75. Michiels Carine, Minet Emmanuel, Mottet Denis, Raes Martine. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med. 2002 Nov 1;33(9):1231–1242. doi: 10.1016/s0891-5849(02)01045-6. [DOI] [PubMed] [Google Scholar]
  76. Miyabayashi S., Hanamizu H., Nakamura R., Endo H., Tada K. Defects of mitochondrial respiratory enzymes in cloned cells from MELAS fibroblasts. J Inherit Metab Dis. 1992;15(5):797–802. doi: 10.1007/BF01800024. [DOI] [PubMed] [Google Scholar]
  77. Moraes C. T., DiMauro S., Zeviani M., Lombes A., Shanske S., Miranda A. F., Nakase H., Bonilla E., Werneck L. C., Servidei S. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989 May 18;320(20):1293–1299. doi: 10.1056/NEJM198905183202001. [DOI] [PubMed] [Google Scholar]
  78. Moraes C. T., Ricci E., Bonilla E., DiMauro S., Schon E. A. The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet. 1992 May;50(5):934–949. [PMC free article] [PubMed] [Google Scholar]
  79. Morgan-Hughes J. A., Sweeney M. G., Cooper J. M., Hammans S. R., Brockington M., Schapira A. H., Harding A. E., Clark J. B. Mitochondrial DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim Biophys Acta. 1995 May 24;1271(1):135–140. doi: 10.1016/0925-4439(95)00020-5. [DOI] [PubMed] [Google Scholar]
  80. Moslemi A. R., Tulinius M., Holme E., Oldfors A. Threshold expression of the tRNA(Lys) A8344G mutation in single muscle fibres. Neuromuscul Disord. 1998 Jun;8(5):345–349. doi: 10.1016/s0960-8966(98)00029-7. [DOI] [PubMed] [Google Scholar]
  81. Murphy M. P. How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta. 2001 Mar 1;1504(1):1–11. doi: 10.1016/s0005-2728(00)00234-6. [DOI] [PubMed] [Google Scholar]
  82. Nakada K., Inoue K., Ono T., Isobe K., Ogura A., Goto Y. I., Nonaka I., Hayashi J. I. Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med. 2001 Aug;7(8):934–940. doi: 10.1038/90976. [DOI] [PubMed] [Google Scholar]
  83. Nelson B. D., Luciakova K., Li R., Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta. 1995 May 24;1271(1):85–91. doi: 10.1016/0925-4439(95)00014-u. [DOI] [PubMed] [Google Scholar]
  84. Ono T., Isobe K., Nakada K., Hayashi J. I. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet. 2001 Jul;28(3):272–275. doi: 10.1038/90116. [DOI] [PubMed] [Google Scholar]
  85. Papa S., Sardanelli A. M., Scacco S., Petruzzella V., Technikova-Dobrova Z., Vergari R., Signorile A. The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade. J Bioenerg Biomembr. 2002 Feb;34(1):1–10. doi: 10.1023/a:1013863018115. [DOI] [PubMed] [Google Scholar]
  86. Paumard Patrick, Vaillier Jacques, Coulary Bénédicte, Schaeffer Jacques, Soubannier Vincent, Mueller David M., Brèthes Daniel, di Rago Jean-Paul, Velours Jean. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002 Feb 1;21(3):221–230. doi: 10.1093/emboj/21.3.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Pedersen P. L. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274. doi: 10.1159/000401202. [DOI] [PubMed] [Google Scholar]
  88. Petruzzella V., Moraes C. T., Sano M. C., Bonilla E., DiMauro S., Schon E. A. Extremely high levels of mutant mtDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243. Hum Mol Genet. 1994 Mar;3(3):449–454. doi: 10.1093/hmg/3.3.449. [DOI] [PubMed] [Google Scholar]
  89. Pfeiffer T., Schuster S., Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001 Mar 29;292(5516):504–507. doi: 10.1126/science.1058079. [DOI] [PubMed] [Google Scholar]
  90. Porteous W. K., James A. M., Sheard P. W., Porteous C. M., Packer M. A., Hyslop S. J., Melton J. V., Pang C. Y., Wei Y. H., Murphy M. P. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem. 1998 Oct 1;257(1):192–201. doi: 10.1046/j.1432-1327.1998.2570192.x. [DOI] [PubMed] [Google Scholar]
  91. Preiss T., Lowerson S. A., Weber K., Lightowlers R. N. Human mitochondria: distinct organelles or dynamic network? Trends Genet. 1995 Jun;11(6):211–212. doi: 10.1016/s0168-9525(00)89048-4. [DOI] [PubMed] [Google Scholar]
  92. Preston T. J., Abadi A., Wilson L., Singh G. Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):45–61. doi: 10.1016/s0169-409x(01)00127-2. [DOI] [PubMed] [Google Scholar]
  93. Raha S., Robinson B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000 Oct;25(10):502–508. doi: 10.1016/s0968-0004(00)01674-1. [DOI] [PubMed] [Google Scholar]
  94. Reder C. Metabolic control theory: a structural approach. J Theor Biol. 1988 Nov 21;135(2):175–201. doi: 10.1016/s0022-5193(88)80073-0. [DOI] [PubMed] [Google Scholar]
  95. Reichmann H., Vogler L., Seibel P. Ragged red or ragged blue fibers. Eur Neurol. 1996;36(2):98–102. doi: 10.1159/000117217. [DOI] [PubMed] [Google Scholar]
  96. Roesler W. J. The role of C/EBP in nutrient and hormonal regulation of gene expression. Annu Rev Nutr. 2001;21:141–165. doi: 10.1146/annurev.nutr.21.1.141. [DOI] [PubMed] [Google Scholar]
  97. Rossignol R., Letellier T., Malgat M., Rocher C., Mazat J. P. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J. 2000 Apr 1;347(Pt 1):45–53. [PMC free article] [PubMed] [Google Scholar]
  98. Rossignol R., Malgat M., Mazat J. P., Letellier T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J Biol Chem. 1999 Nov 19;274(47):33426–33432. doi: 10.1074/jbc.274.47.33426. [DOI] [PubMed] [Google Scholar]
  99. Schon E. A., Bonilla E., DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997 Apr;29(2):131–149. doi: 10.1023/a:1022685929755. [DOI] [PubMed] [Google Scholar]
  100. Schon E. A. Mitochondrial genetics and disease. Trends Biochem Sci. 2000 Nov;25(11):555–560. doi: 10.1016/s0968-0004(00)01688-1. [DOI] [PubMed] [Google Scholar]
  101. Schröder R., Vielhaber S., Wiedemann F. R., Kornblum C., Papassotiropoulos A., Broich P., Zierz S., Elger C. E., Reichmann H., Seibel P. New insights into the metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle. J Neuropathol Exp Neurol. 2000 May;59(5):353–360. doi: 10.1093/jnen/59.5.353. [DOI] [PubMed] [Google Scholar]
  102. Schägger H. Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol. 2001;65:231–244. doi: 10.1016/s0091-679x(01)65014-3. [DOI] [PubMed] [Google Scholar]
  103. Schägger H., Ohm T. G. Human diseases with defects in oxidative phosphorylation. 2. F1F0 ATP-synthase defects in Alzheimer disease revealed by blue native polyacrylamide gel electrophoresis. Eur J Biochem. 1995 Feb 1;227(3):916–921. doi: 10.1111/j.1432-1033.1995.tb20219.x. [DOI] [PubMed] [Google Scholar]
  104. Schägger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000 Apr 17;19(8):1777–1783. doi: 10.1093/emboj/19.8.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Sciacco M., Bonilla E., Schon E. A., DiMauro S., Moraes C. T. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet. 1994 Jan;3(1):13–19. doi: 10.1093/hmg/3.1.13. [DOI] [PubMed] [Google Scholar]
  106. Servidei S. Mitochondrial encephalomyopathies: gene mutation. Neuromuscul Disord. 2001 Sep;11(6-7):690–695. doi: 10.1016/s0960-8966(01)00265-6. [DOI] [PubMed] [Google Scholar]
  107. Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. doi: 10.1016/0092-8674(90)90059-n. [DOI] [PubMed] [Google Scholar]
  108. Silvestri G., Rana M., Odoardi F., Modoni A., Paris E., Papacci M., Tonali P., Servidei S. Single-fiber PCR in MELAS(3243) patients: correlations between intratissue distribution and phenotypic expression of the mtDNA(A3243G) genotype. Am J Med Genet. 2000 Sep 18;94(3):201–206. doi: 10.1002/1096-8628(20000918)94:3<201::aid-ajmg5>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  109. Simonides W. S., Thelen M. H., van der Linden C. G., Muller A., van Hardeveld C. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis. Biosci Rep. 2001 Apr;21(2):139–154. doi: 10.1023/a:1013692023449. [DOI] [PubMed] [Google Scholar]
  110. Spelbrink J. N., Van Oost B. A., Van den Bogert C. The relationship between mitochondrial genotype and mitochondrial phenotype in lymphoblasts with a heteroplasmic mtDNA deletion. Hum Mol Genet. 1994 Nov;3(11):1989–1997. doi: 10.1093/hmg/3.11.1989. [DOI] [PubMed] [Google Scholar]
  111. Taanman J. W. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999 Feb 9;1410(2):103–123. doi: 10.1016/s0005-2728(98)00161-3. [DOI] [PubMed] [Google Scholar]
  112. Taivassalo Tanja, Abbott Amy, Wyrick Phil, Haller Ronald G. Venous oxygen levels during aerobic forearm exercise: An index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol. 2002 Jan;51(1):38–44. doi: 10.1002/ana.10027. [DOI] [PubMed] [Google Scholar]
  113. Tatuch Y., Christodoulou J., Feigenbaum A., Clarke J. T., Wherret J., Smith C., Rudd N., Petrova-Benedict R., Robinson B. H. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet. 1992 Apr;50(4):852–858. [PMC free article] [PubMed] [Google Scholar]
  114. Taylor R. W., Wardell T. M., Smith P. M., Muratovska A., Murphy M. P., Turnbull D. M., Lightowlers R. N. An antigenomic strategy for treating heteroplasmic mtDNA disorders. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):121–125. doi: 10.1016/s0169-409x(01)00130-2. [DOI] [PubMed] [Google Scholar]
  115. Triepels R. H., Hanson B. J., van den Heuvel L. P., Sundell L., Marusich M. F., Smeitink J. A., Capaldi R. A. Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns. J Biol Chem. 2000 Dec 8;276(12):8892–8897. doi: 10.1074/jbc.M009903200. [DOI] [PubMed] [Google Scholar]
  116. Ventura Barbara, Genova Maria Luisa, Bovina Carla, Formiggini Gabriella, Lenaz Giorgio. Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta. 2002 Feb 15;1553(3):249–260. doi: 10.1016/s0005-2728(01)00246-8. [DOI] [PubMed] [Google Scholar]
  117. Vernham G. A., Reid F. M., Rundle P. A., Jacobs H. T. Bilateral sensorineural hearing loss in members of a maternal lineage with mitochondrial point mutation. Clin Otolaryngol Allied Sci. 1994 Aug;19(4):314–319. doi: 10.1111/j.1365-2273.1994.tb01238.x. [DOI] [PubMed] [Google Scholar]
  118. Vielhaber S., Kudin A., Schröder R., Elger C. E., Kunz W. S. Muscle fibres: applications for the study of the metabolic consequences of enzyme deficiencies in skeletal muscle. Biochem Soc Trans. 2000 Feb;28(2):159–164. doi: 10.1042/bst0280159. [DOI] [PubMed] [Google Scholar]
  119. Villani G., Attardi G. In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1166–1171. doi: 10.1073/pnas.94.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Villani G., Greco M., Papa S., Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998 Nov 27;273(48):31829–31836. doi: 10.1074/jbc.273.48.31829. [DOI] [PubMed] [Google Scholar]
  121. Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
  122. Wallace D. C. Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet. 1986 Jan;12(1):41–49. doi: 10.1007/BF01560726. [DOI] [PubMed] [Google Scholar]
  123. Weber Katharina, Brück Patrick, Mikes Zsuzsanna, Küpper Jan-Heiner, Klingenspor Martin, Wiesner Rudolf J. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology. 2002 Jan;143(1):177–184. doi: 10.1210/endo.143.1.8600. [DOI] [PubMed] [Google Scholar]
  124. Whitehouse I., Flaus A., Havas K., Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling. Biochem Soc Trans. 2000;28(4):376–379. [PubMed] [Google Scholar]
  125. Wiedemann F. R., Kunz W. S. Oxygen dependence of flux control of cytochrome c oxidase -- implications for mitochondrial diseases. FEBS Lett. 1998 Jan 23;422(1):33–35. doi: 10.1016/s0014-5793(97)01586-x. [DOI] [PubMed] [Google Scholar]
  126. Wilson Heather L., Roesler William J. CCAAT/enhancer binding proteins: do they possess intrinsic cAMP-inducible activity? Mol Cell Endocrinol. 2002 Feb 25;188(1-2):15–20. doi: 10.1016/s0303-7207(01)00754-7. [DOI] [PubMed] [Google Scholar]
  127. Wredenberg Anna, Wibom Rolf, Wilhelmsson Hans, Graff Caroline, Wiener Heidi H., Burden Steven J., Oldfors Anders, Westerblad Håkan, Larsson Nils-Göran. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A. 2002 Nov 4;99(23):15066–15071. doi: 10.1073/pnas.232591499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Yoneda M., Miyatake T., Attardi G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol. 1994 Apr;14(4):2699–2712. doi: 10.1128/mcb.14.4.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Zhang Mei, Mileykovskaya Eugenia, Dowhan William. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem. 2002 Oct 2;277(46):43553–43556. doi: 10.1074/jbc.C200551200. [DOI] [PubMed] [Google Scholar]
  130. Zhou L., Chomyn A., Attardi G., Miller C. A. Myoclonic epilepsy and ragged red fibers (MERRF) syndrome: selective vulnerability of CNS neurons does not correlate with the level of mitochondrial tRNAlys mutation in individual neuronal isolates. J Neurosci. 1997 Oct 15;17(20):7746–7753. doi: 10.1523/JNEUROSCI.17-20-07746.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. de Vries D., de Wijs I., Ruitenbeek W., Begeer J., Smit P., Bentlage H., van Oost B. Extreme variability of clinical symptoms among sibs in a MELAS family correlated with heteroplasmy for the mitochondrial A3243G mutation. J Neurol Sci. 1994 Jun;124(1):77–82. doi: 10.1016/0022-510x(94)90014-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES